首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positive genotoxicity results are often observed using mammalian cells in culture with agents that are not in vivo genotoxins. We here illustrate one possible explanation: interaction of test chemicals with the cell-culture media used. We find that the toxicity and clastogenicity of epigallocatechin gallate (EGCG) to Chinese Hamster ovary (CHO) cells is affected by the culture medium used and appears largely or entirely due to variable rates of formation of hydrogen peroxide (H(2)O(2)) by chemical reactions of EGCG with the culture media. Catalase decreased EGCG toxicity substantially. Of seven different types of commonly used media evaluated, F-10 and F-12 nutrient mixtures were the least prone to produce this artefact. Although it generated H(2)O(2) in the culture media, ascorbate was not toxic to CHO cells because the H(2)O(2) levels achieved were insufficient to kill these cells. Thus, the culture medium, the cell type and the presence or absence of catalase (e.g. its variable amounts in S9 fractions) must be taken into account in in vitro genotoxicity testing.  相似文献   

2.
Colorectal cancer is the second leading cause of cancer-related deaths in the U.S. Met, the receptor for hepatocyte growth factor (HGF), is over-expressed in colon tumors and is associated with poor prognosis. Recently, the green tea polyphenol (−)-epigallocatechin gallate (EGCG) was reported to suppress Met activation in breast cancer cells. However, the possible confounding effect of hydrogen peroxide (H2O2), produced when EGCG is added to cell culture media, was not assessed. In the present study, the human colon cancer cell lines HCT116 and HT29 were used to examine the relationships between Met activation, EGCG treatment, and H2O2 generation. At concentrations of 0.5, 1, and 5 μM, EGCG suppressed markedly the activation of Met in the presence of HGF. Concentrations of 10 μM EGCG and below generated low amounts of H2O2 (<1.5 μM), whereas higher H2O2 concentrations (>5 μM) were required to directly increase the phosphorylation of Met. Moreover, suppression of Met activation by EGCG occurred in the presence or absence of catalase, suggesting that such effects were not an ‘artifact’ of H2O2 generated from EGCG in cell culture media. We conclude that EGCG might be a beneficial therapeutic agent in the colon, inhibiting Met signaling and helping to attenuate tumor spread/metastasis, independent of H2O2-related mechanisms.  相似文献   

3.
Reactive oxygen species (ROS) released from polymorphonuclear leukocytes and macrophages could cause DNA damage, but also induce cell death. Therefore inhibition of cell death must be an important issue for accumulation of genetic changes in lymphoid cells in inflammatory foci. Scavengers in the post culture medium of four lymphoid cell lines, lymphoblastoid cell lines (LCL), Raji, BJAB and Jurkat cells, were examined. Over 80% of cultured cells showed cell death 24 h after xanthine (X)/xanthine oxidase (XOD) treatment, which was suppressed by addition of post culture medium from four cell lines in a dose-dependent manner. H2O2 but not O·-2 produced by the X/XOD reaction was responsible for the cytotoxity, thus we used H2O2 as ROS stress thereafter. The H2O2-scavenging activity of post culture media from four cell lines increased rapidly at the first day and continued to increase in the following 2–3 days for LCL, Raji and BJAB cells. The scavenging substance was shown to be pyruvate, with various concentrations in the cultured medium among cell lines. Over 99% of total pyruvate was present in the extracellular media and less than 1% in cells. α-Cyano-4-hydroxycinnamate, a specific inhibitor of the H+-monocarbohydrate transporter, increased the H2O2-scavenging activity in the media from all four cell lines via inhibition of pyruvate re-uptake by cultured cells from the media. These findings suggest that lymphoid cells in inflammatory foci could survive even under ROS by producing pyruvate, so that accumulation of lymphoid cells with DNA damage is possible.  相似文献   

4.
Neuroprotective potential of epigallo catechin-3-gallate in PC-12 cells   总被引:1,自引:0,他引:1  
Oxidative stress is a major player in aging and neurodegenerative disorders. Macromolecular damage occurs as a result of oxidative stress that affects the mitochondria. Mitochondrial damage leads to cell death by apoptosis or necrosis. EGCG is a tea polyphenol that protects the cells against oxidative stress. Neuroprotective potential of EGCG was tested against H2O2 induced oxidative stress in PC-12 cells. PC-12 cells were grown in tissue culture flasks. Oxidative stress was induced by adding H2O2 to the cells. EGCG was also added and the cell death was assessed using MTT assay. Oxidative stress was assessed by protein carbonyl and thiol status. Mitochondrial membrane potential was studied using JC-1 staining. TNF-α levels were assessed using ELISA. H2O2 increased the protein carbonyl content and reduced the thiol status in the PC-12 cells. Cell death was increased in H2O2 treated cells as shown by MTT assay. Mitochondrial membrane potential was also decreased along with increase in TNF-α level in H2O2 treated cells. EGCG brought about an increase in the cellular thiol status and decreased the protein carbonyl content in the PC-12 cells. Cell death was attenuated by EGCG treatment along with an increase in mitochondrial membrane potential and decrease in TNF-α level. EGCG conferred its antioxidant potential to PC-12 cells as evident by decreased protein damage. Mitochondrial membrane potential was improved along with a decrement in the cell death in PC-12 cells. EGCG acts as a good neutraceutical antioxidant to render neuroprotectivity to PC-12 cells.  相似文献   

5.
Resistance of Penicillium piceumF-648 to hydrogen peroxide under short-term and prolonged oxidative stress was studied. An increase in the activity of intracellular catalase in fungal cells after short-term exposure to hydrogen peroxide was shown. Activation of fungal cells induced by H2O2 depends on the H2O2 concentration, time of exposure, and growth phase of the fungus. Variants of P. piceum F-648 that produced two forms of extracellular catalase with different catalytic properties were obtained due to prolonged adaptation to H2O2. Catalase with low affinity for substrate was produced predominantly by the parent culture and variant 3; however, a high substrate affinity of catalase was observed in variant 5. Variant 5 of P. piceum F-648 displayed a high catalytic activity and operational stability of catalase in the presence of phosphate ions and a concentration of substrate less than 30 mM at pH more than 7.  相似文献   

6.
Epigallocatechin-3-gallate (EGCG) is the main polyphenolic constituent in green tea and is believed to function as an antioxidant. However, increasing evidence indicates that EGCG produces reactive oxygen species (ROS) and subsequent cell death. In this study, we investigated the prooxidative effects of EGCG on the HIT-T15 pancreatic beta cell line. Dose-dependent cell viability was monitored with the cell counting kit-8 assay, while the induction of apoptosis was analyzed by a cell death ELISA kit and comet assay. Extracellular H2O2 was determined using the Amplex Red Hydrogen Peroxide Assay Kit. Intracellular oxidative stress was measured by fluorometric analysis of 2′,7′-dichlorofluorescin (DCFH) oxidation using DCFH diacetate (DA) as the probe. Treatment with EGCG (5–100 μM) decreased the viability of pancreatic beta cells, caused concomitant increases in apoptotic cell death, and increased the production of H2O2 and ROS. Catalase, the iron-chelating agent diethylenetriaminepentaacetic acid, and the Fe(II)-specific chelator o-phenanthroline all suppressed the effects of EGCG, indicating the involvement of both H2O2 and Fe(II) in the mechanism of action of EGCG. The antioxidant N-acetyl-cysteine and alpha-lipoic acid also suppressed the effects of EGCG. Furthermore, EGCG did not scavenge exogenous H2O2, but rather, it synergistically increased H2O2-induced oxidative cell damage in pancreatic beta cells. Together, these findings suggest that in the HIT-T15 pancreatic beta cell line, EGCG mediated the generation of H2O2, triggering Fe(II)-dependent formation of a highly toxic radical that in turn induced oxidative cell damage.  相似文献   

7.
Many papers in the literature have described complex effects of flavonoids and other polyphenols on cells in culture. In this paper we show that hydroxytyrosol, delphinidin chloride and rosmarinic acid are unstable in three commonly-used cell culture media (Dulbecco’s modified Eagle’s medium (DMEM), RPMI 1640 (RPMI) and Minimal Essential Medium Eagle (MEM)) and undergo rapid oxidation to generate H2O2. This may have confounded some previous studies on the cellular effects of these compounds. By contrast, apigenin, curcumin, hesperetin, naringenin, resveratrol and tyrosol did not generate significant H2O2 levels in these media. Nevertheless, curcumin and, to a lesser extent, resveratrol (but not tyrosol) were also unstable in DMEM, so the absence of detectable H2O2 production by a compound in cell culture media should not be equated to stability of that compound. Compound instability and generation of H2O2 must be taken into account in interpreting effects of phenolic compounds on cells in culture.  相似文献   

8.
Reactive oxygen species produce oxidized bases, deoxyribose lesions and DNA strand breaks in mammalian cells. Previously, we demonstrated that aldehydic DNA lesions (ADLs) were induced in mammalian cells by 10 mM hydrogen peroxide (H2O2). Interestingly, a bimodal H2O2 dose–response relationship in cell toxicity has been reported for Escherichia coli deficient in DNA repair as well as Chinese hamster ovary (CHO) cells. Furthermore, it has been demonstrated that H2O2 causes single-strand breaks in purified DNA in the presence of iron and induces mitochondrial DNA damage in CHO cells with a biphasic dose–response curve. Here we show that H2O2 produces ADLs at concentrations as low as 0.06 mM in HeLa cells and that lower concentrations of H2O2 were much more efficient at inducing ADLs than higher concentrations. This dose–response curve is strikingly similar to that for cell killing effects in E.coli deficient in DNA repair exposed to H2O2. Interestingly, serial treatment of submillimolar levels of H2O2 induced a massive accumulation of ADLs. The toxicity arising from H2O2 determined by intracellular NAD(P)H in cells correlated well with the formation of ADLs. The addition of dipyridyl, an iron (II)-specific chelator, significantly protected against DNA damage and cell toxicity from submillimolar, but not millimolar, amounts of H2O2. These results suggest that ADLs induced by submillimolar levels of H2O2 may be due to a Fenton-type reaction between H2O2 and intracellular iron ions in mammalian cells.  相似文献   

9.
Ascorbate and several phenolic compounds readily oxidise in cell culture media to generate hydrogen peroxide. However, media containing pyruvate showed much less H2O2 production, apparently because pyruvate can scavenge H2O2 in the medium. Researchers must be aware that compounds under test can sometimes readily oxidise in cell culture media, that this might not be detected by measurement of H2O2 if the media contain pyruvate, and that pyruvate can be substantially depleted in the media as a result.  相似文献   

10.
(−)-Epigallocatechin-3-O-gallate (EGCG) monoesters modified with butanoyl (EGCG-C4), octanoyl (EGCG-C8), palmitoyl groups (EGCG-C16) were synthesized by a lipase-catalyzed transesterification method and their antitumor activities were investigated in vitro and in vivo. The in vitro antitumor activities of EGCG-monoester derivatives increased in an alkyl chain length-dependent manner. The cytotoxicity of EGCG, EGCG-C4, EGCG-C8 was mainly caused by H2O2 which was generated with their oxidation. On the other hand, EGCG-C16 was more stable than EGCG and it did not generate H2O2 in the cell culture medium. Furthermore, EGCG-C16 inhibited cell proliferation and induced apoptosis in the presence of catalase. EGCG-C16 was found to inhibit the phosphorylation of the epidermal growth factor receptor (EGFR), which is related to various types of tumor growth. EGCG-C16 suppressed tumor growth in vivo in colorectal tumor bearing mice in comparison to an untreated control, vector control (DMSO) and EGCG.  相似文献   

11.
We have recently described the development of a serum-free medium that contains casein, insulin, testosterone, transferrin, and linoleic acid and that supports the long-term growth of a wide variety of lymphoid cells. A problem of culturing cells in this medium is the difficulty of cloning cells or growing cells at low density. We now describe the formulation of a chemically defined medium that supports the clonal growth of the murine S49 T lymphoma cell line. This medium contains catalase, insulin, transferrin, testosterone, Na2SeO3, and dilinoleoyl phosphatidylcholine and contains less than 50 μg/ml total protein. The two novel additions in this medium are catalase, which replaces casein and dilinoleoyl phosphatidylcholine, which substitutes for linoleic acid in this defined medium. In addition to S49 cells, the medium described above supports the long-term growth of other lymphoid cells, including human and murine hybridomas. We propose that catalase functions to degrade H2O2 that is present in the cultures and that casein, bovine serum albumin, and other proteins commonly included in media for cultured cells may also scavenge H2O2. Na2SeO3 also partially protects against the death of cells at clonal density and this protection may, like catalase, be due to removal of H2O2. Our results suggest that H2O2 is an important cytotoxic agent that prevents growth of lymphoid cells during culture in serum-free media and perhaps in serum-containing media as well.  相似文献   

12.
The chemical additive sodium butyrate (NaBu) has been applied in cell culture media as a direct and convenient method to increase the protein expression in Chinese hamster ovary (CHO) and other mammalian cells. In this study, we examined an alternative chemical additive, 1,3,4‐O‐Bu3ManNAc, for its effect on recombinant protein production in CHO. Supplementation with 1,3,4‐O‐Bu3ManNAc for two stable CHO cell lines, expressing human erythropoietin or IgG, enhanced protein expression for both products with negligible impact on cell growth, viability, glucose utilization, and lactate accumulation. In contrast, sodium butyrate treatment resulted in a ~20% decrease in maximal viable cell density and ~30% decrease in cell viability at the end of cell cultures compared to untreated or 1,3,4‐O‐Bu3ManNAc treated CHO cell lines for both products. While NaBu treatment enhanced product yields more than the 1,3,4‐O‐Bu3ManNAc treatment, the NaBu treated cells also exhibited higher levels of caspase 3 positive cells using microscopy analysis. Furthermore, the mRNA levels of four cell apoptosis genes (Cul2, BAK, BAX, and BCL2L11) were up‐regulated more in sodium butyrate treated wild‐type, erythropoietin, or IgG expressing CHO‐K1 cell lines while most of the mRNA levels of apoptosis genes in 1,3,4‐O‐Bu3ManNAc treated cell lines remained equal or increased only slightly compared to the levels in untreated CHO cell lines. Finally, lectin blot analysis revealed that the 1,3,4‐O‐Bu3ManNAc‐treated cells displayed higher relative sialylation levels on recombinant EPO, consistent with the effect of the ManNAc component of this additive, compared to control while NaBu treatment led to lower sialylation levels than control, or 1,3,4‐O‐Bu3ManNAc‐treatment. These findings demonstrate that 1,3,4‐O‐Bu3ManNAc has fewer negative effects on cell cytotoxicity and apoptosis, perhaps as a result of a more deliberate uptake and release of the butyrate compounds, while simultaneously increasing the expression of multiple recombinant proteins, and improving the glycosylation characteristics when applied at comparable molarity levels to NaBu. Thus, 1,3,4‐O‐Bu3ManNAc represents a highly promising media additive alternative in cell culture for improving protein yields without sacrificing cell mass and product quality in future bioproduction processes.
  相似文献   

13.
A cell culture of Picea abies (L.) Karst. was used for studies of H2O2 generation during constitutive extracellular lignin formation and after elicitation by cell wall fragments of a pathogenic fungus, Heterobasidium parviporum. Stable, micromolar levels of H2O2 were present in the culture medium during lignin formation. Elicitation induced a burst of H2O2, peaking at ca. 90 min after elicitation. Of exogenous reducing substrates that may be responsible for the synthesis of H2O2 from O2, NADH stimulated H2O2 production irrespective of elicitation. Cysteine (Cys) and glutathione (GSH) partially scavenged the constitutive H2O2, but usually increased or prolonged elicitor-induced H2O2 formation. Culture medium peroxidases were not able to generate H2O2 in vitro with Cys or GSH as reductants. These thiols, however, generated H2O2 non-enzymically at pH 4.5. [35S]Sulphate feeding to spruce cells showed that endogenous sulphur-containing compounds (including GSH, GSSG and cysteic acid) existed in the culture medium. The apoplastic levels of these were, however, undetectable by the monobromobimane method suggesting that their contribution to apoplastic H2O2 formation is probably minor. Azide, an inhibitor of haem-containing enzymes, slightly inhibited constitutive H2O2 generation but strongly delayed the elicitor-induced H2O2 accumulation. Diphenylene iodonium, an inhibitor of flavin-containing enzymes, efficiently inhibited H2O2 production irrespective of elicitation. Elicitation led to downregulation of the expression of several peroxidase genes, and peroxidase activity in the culture medium was slightly reduced. Expression of three other peroxidase genes and a respiratory burst oxidase homologue (rboh) gene were upregulated. These data suggest that both peroxidases and rboh may contribute to H2O2 generation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) in shake-flask cultures was exposed to 10–20 mmol/L H2O2 at various culture stages, and the astaxanthin production was significantly increased by H2O2 fed at 0 or 24 h (exponential phase), but only slightly at 48 h (near stationary phase). The astaxanthin production was enhanced most significantly with double feeding of 10 mmol/L H2O2 at 0 and 24 h, reaching a cellular content of 1.30 mg/g cell and a volumetric yield of 10.4 mg/L, which were 83 and 65% higher, respectively, than those of the control (0.71 mg/g cell and 6.3 mg/L). The intracellular catalase (CAT) activity was also increased after H2O2 treatment. The increases in CAT and astaxanthin of cells could be detected within 4 h of H2O2 treatment. The increase in the astaxanthin content of cells was concomitant with a notable decrease in the β-carotene content. The older yeast cells at late culture stage (120 h), due perhaps in part to their higher astaxanthin contents, were more tolerant to H2O2 toxicity than the younger cells (24 h). No enhancement of the astaxanthin biosynthesis was attained when H2O2 was added to the yeast culture together with a sufficient amount of exogenous CAT. The results suggest that astaxanthin biosynthesis in X. dendrorhous can be stimulated by H2O2 as an antioxidative response.  相似文献   

15.
It has been suggested that extended-term cultures of human lymphocytes could be used as a complement to cell lines based on transformed cells when testing the genotoxicity of chemicals. To investigate whether the pattern of induced DNA damage and its subsequent repair differs significantly between cultures based on different blood donors, hydrogen peroxide (H2O2)-induced DNA damage was measured in cultures from four different subjects using the comet assay. The DNA damage was significantly increased in all cultures after 10 min exposure to 0.25 mmol/L H2O2, and there was a significant decrease in the H2O2-induced DNA damage in all cultures after 30 min of DNA repair. The level of damage varied between the different donors, especially after the repair. Using PCR and DNA sequencing, exon 5 of the p53 gene was sequenced in the lymphocytes from the donors with the lowest and highest residual damage. No such mutation was found. Mouse lymphoma L5178Y cells carrying the p53 mutation in exon 5 were included as a reference. These cells were found to be less sensitive toward the H2O2-induced DNA damage, and they were also found to have a rather low DNA repair capacity. The demonstrated variation in H2O2-induced DNA damage and DNA repair capacity between the cultures from the different subjects may be important from a risk assessment perspective, but is obviously not of decisive importance when it comes to the development of a routine assay for genotoxicity.  相似文献   

16.
The supercritical concentration of CO2 (SCCO2) and a high concentration (3.0%) of molecules of hydrogen peroxide (H2O2) are currently being used as antiseptic and antibacterial agents. The fact that low concentrations of CO2 have an activation effect on functional activity of microbes allows us to predict that CO2 could elevate the toxic effect of H2O2 on cells. To check this hypothesis the dependency of the toxic effect of H2O2 on wild type of Escherichia coli K-12 on soluble concentration of CO2 in culture media was studied. The obtained data show that culture media enriched with CO2 leads to the increase of toxic effect of H2O2 on microbes at both cases when pH is constant and when it changes. So CO2 in non-supercritical concentration could elevate the toxic effect of H2O2 on microbes by the activation of the metabolic processes in microbes. During the experiments we used classical microbiological methods (indirect viable cell counts or counting colony forming units (CFUs)), as well as the method of measuring hydrogen peroxide content in aqueous solution by means of enhanced chemiluminescence method in a peroxidase-luminol-p-iodophenol system. This discovery is concerning to use CO2/H2O2 combination system, which could have implication in the inhibition of growth of microbes in water and the microbiological monitoring of water could provide valuable information for managing the health of exhibition of aqua ecosystems.  相似文献   

17.
The effects of media and culture duration on growth, macromolecular composition and toxicity of an anatoxin- a-producing freshwater cyanobacterium Anabaena flos-aquae (UTEX 2383) were evaluated. The four media A3M7, CB, MA and B-12 influenced growth in terms of cell number, chlorophyll-a content and specific growth rate. A3M7 medium supported the best growth. The macromolecular composition of cultured cells, viz. total carbohydrate, protein and lipid content varied with media and culture duration reaching maximum concentration at various growth periods. The differences were significant due to interaction of the culture medium and duration. Toxicity of cells grown in different media was compared by Artemia salina bioassay and mouse units. The cells grown in A3M7 medium showed highest toxicity and the optimum culture duration was 5 weeks. In terms of both growth characteristics and toxicity the media can be ranked as A3M7, MA, CB and B-12 in decreasing order.  相似文献   

18.
Entamoeba histolytica required CO2 for growth in axenic culture while growth was inhibited by H2. The organism was tolerant to 5% O2 in the gas phase and it was able to detoxify products of O2 reduction in the medium. The ameba did not require a negative oxidation-reduction potential for axenic growth. However, little or no free O2 was present in media exposed to 5% O2 in the gas phase. Growth was improved by adding yeast extract to the medium.  相似文献   

19.
Two strains of Lactobacillus plantarum accumulated H2O2 when grown aerobically in a complex glucose based medium. The H2O2 accumulation did not occur immediately on exposure of the culture to O2 but was delayed for a time which, in the case of one strain, was dependent on the amount of inoculum used to seed the culture. The accumulation was always preceded by an increase in the rate of O2 utilization by the cultures. The latter coincided approximately with an increase in specific activity of NADH oxidase, pyruvate oxidase and NADH peroxidase. H2O2 was not a product of NADH oxidase in vitro but was formed in substantial quantities from O2 during oxidation of pyruvate. The three enzymes were induced by O2 and H2O2; the induction of NADH oxidase responded to lower levels of O2 (but not of H2O2) than the pyruvate oxidase or the NADH peroxidase.Abbreviations MRSG Mann, Rogosa and Sharpe medium (1960) with glucose as fermentation source - TPP thiamin pyrophosphate  相似文献   

20.
Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin‐3‐gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H2O2 release in cell cultures, and exogenous catalase (CAT) abrogated EGCG‐induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3‐loaded, EGCG‐exposed MMe cells showed significant [Ca2+]i rise, prevented by CAT, dithiothreitol or the T‐type Ca2+ channel blockers mibefradil and NiCl2. Cell loading with dihydrorhodamine 123 revealed EGCG‐induced ROS production, prevented by CAT, mibefradil or the Ca2+ chelator BAPTA‐AM. Direct exposure of cells to H2O2 produced similar effects on Ca2+ and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Cav3.2 T‐type Ca2+ channels in these cells, compared to normal mesothelium. Also, Cav3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Cav3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T‐type Ca2+ channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号