首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The molecular basis of the barley dominant Hooded (K) mutant is a duplication of 305 bp in intron IV of the homeobox gene Bkn3. A chemical mutagenesis screen was carried out to identify genetical factors that participate in Bkn3 intron-mediated gene regulation. Plants from recurrently mutagenized KK seeds were examined for the suppression of the hooded awn phenotype induced by the K allele and, in total, 41 suK (suppressor of K) recessive mutants were identified. Complementation tests established the existence of five suK loci, and alleles suKB-4, suKC-33, suKD-25, suKE-74, and suKF-76 were studied in detail. All K-suppressed mutants showed a short-awn phenotype. The suK loci have been mapped by bulked segregant analysis nested in a standard mapping procedure based on AFLP markers. K suppressor loci suKB, B, E, and F all map in a short interval of chromosome 7H, while the locus suKD is assigned to chromosome 5H. A complementation test between the four suK mutants mapping on chromosome 7H and the short-awn mutant lks2, located nearby, excluded the allelism between suK loci and lks2. The last experiment made clear that the short-awn phenotype of suK mutants is due to a specific dominant function of the K allele, a function that is independent from the control on hood formation. The suK loci are discussed as candidate participants in the regulation of Bkn3 expression.  相似文献   

3.
The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number and function of genes that are involved in ethylene biosynthesis and reception is necessary to determine the role of specific genes within gene families known to influence ethylene biosynthesis and other aspects of ethylene function in plants. Our objective was built on previous studies that have established the critical role of ethylene in the in vitro response of barley (Hordeum vulgare L.), and that have identified ethylene-related QTL in the barley genome. In this study, we have identified the locations of genes in the barley 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO), and ethylene receptor (ETR) gene families. Specific primers for PCR amplification of each gene were developed and used to map these genes in the Oregon Wolf Barley mapping population. Five ACS, 8 ACO, and 7 ETR genes were identified and mapped to six of the barley chromosomes. Gene locations were syntenous to the orthologs in rice except for two that mapped to chromosome 6H. Gene duplication was evident for ACO genes on chromosomes 5H and 6H. Gene-specific primers will be useful for determining expression of each gene under various environmental conditions, including in vitro environments, to better understand the role of ethylene. Of the six known QTL for green plant regeneration in barley, three were located near the genes mapped in this study.  相似文献   

4.
Xu Y  Yu H  Hall TC 《Plant physiology》1994,106(2):459-467
In rice (Oryza sativa L.), cytosolic triosephosphate isomerase (TPI) is encoded by a single gene. TPI catalyzes a vital step in glycolysis, and RNA blots showed that the tpi gene is expressed in all vegetative tissues (root, culm, and leaves) and in rice suspension cells. No effect of light on expression was detected, but submergence of rice seedlings resulted in elevated levels of TPI mRNA in roots and culms. The 2767-bp 5[prime] upstream sequence of the tpi gene was fused translationally with the [beta]-glucuronidase (gusA) gene, and the resulting construct, TPI-GUS, was found to express constitutive, high levels of GUS activity in transgenic tobacco (Nicotiana tabacum) plants. However, the same construct yielded no GUS activity in stably transformed rice plants, and RNA blots showed that no GUS mRNA could be detected even though stable integration of functional copies of the construct was confirmed by Southern blot and genomic polymerase chain reaction analyses. Transient assays using particle bombardment yielded high levels of GUS expression from the TPI-GUS construct in tobacco leaves, but essentially no expression in rice, barley, or maize leaves. When the first intron of the tpi gene was included in the construct (TPI-int1-GUS), transient GUS activity was routinely obtained in rice leaves, revealing that the first intron of the rice tpi gene is crucial for its expression in rice. TPI-int1-GUS also directed transient GUS expression in maize and barley leaves, but little or no activity was obtained from this construct in tobacco, tomato, or soybean leaves. These results with the rice tpi promoter are in accordance with mounting evidence that differences in gene expression exist between monocots and dicots.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   

12.
13.
The molecular mechanisms by which mesenchymal cells differentiate into chondrocytes are still poorly understood. We have used the gene for a chondrocyte marker, the proalpha1(II) collagen gene (Col2a1), as a model to delineate a minimal sequence needed for chondrocyte expression and identify chondrocyte-specific proteins binding to this sequence. We previously localized a cartilage-specific enhancer to 156 bp of the mouse Col2a1 intron 1. We show here that four copies of a 48-bp subsegment strongly increased promoter activity in transiently transfected rat chondrosarcoma (RCS) cells and mouse primary chondrocytes but not in 10T1/2 fibroblasts. They also directed cartilage specificity in transgenic mouse embryos. These 48 bp include two 11-bp inverted repeats with only one mismatch. Tandem copies of an 18-bp element containing the 3' repeat strongly enhanced promoter activity in RCS cells and chondrocytes but not in fibroblasts. Transgenic mice harboring 12 copies of this 18-mer expressed luciferase in ribs and vertebrae and in isolated chondrocytes but not in noncartilaginous tissues except skin and brain. In gel retardation assays, an RCS cell-specific protein and another closely related protein expressed only in RCS cells and primary chondrocytes bound to a 10-bp sequence within the 18-mer. Mutations in these 10 bp abolished activity of the multimerized 18-bp enhancer, and deletion of these 10 bp abolished enhancer activity of 465- and 231-bp intron 1 segments. This sequence contains a low-affinity binding site for POU domain proteins, and competition experiments with a high-affinity POU domain binding site strongly suggested that the chondrocyte proteins belong to this family. Together, our results indicate that an 18-bp sequence in Col2a1 intron 1 controls chondrocyte expression and suggest that RCS cells and chondrocytes contain specific POU domain proteins involved in enhancer activity.  相似文献   

14.
A new resource for cereal genomics: 22K barley GeneChip comes of age   总被引:34,自引:0,他引:34       下载免费PDF全文
In recent years, access to complete genomic sequences, coupled with rapidly accumulating data related to RNA and protein expression patterns, has made it possible to determine comprehensively how genes contribute to complex phenotypes. However, for major crop plants, publicly available, standard platforms for parallel expression analysis have been limited. We report the conception and design of the new publicly available, 22K Barley1 GeneChip probe array, a model for plants without a fully sequenced genome. Array content was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley (Hordeum vulgare) gene sequences from the National Center for Biotechnology Information nonredundant database. Conserved sequences expressed in seedlings of wheat (Triticum aestivum), oat (Avena strigosa), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays) were identified that will be valuable in the design of arrays across grasses. To enhance the usability of the data, BarleyBase, a MIAME-compliant, MySQL relational database, serves as a public repository for raw and normalized expression data from the Barley1 GeneChip probe array. Interconnecting links with PlantGDB and Gramene allow BarleyBase users to perform gene predictions using the 21,439 non-redundant Barley1 exemplar sequences or cross-species comparison at the genome level, respectively. We expect that this first generation array will accelerate hypothesis generation and gene discovery in disease defense pathways, responses to abiotic stresses, development, and evolutionary diversity in monocot plants.  相似文献   

15.
Barley cDNA and genomic clones homologous to the Arabidopsis flowering time regulator GIGANTEA were isolated. Genetic mapping showed that GIGANTEA is present as a single copy gene in barley (3HS) and rice (1S), while two copies are present in maize (3S and 8S) at locations consistent with previous comparative mapping studies. Comparison of the barley peptide with rice and Arabidopsis gave 94% and 79% similarity, respectively. Northern and semi-quantitative RT-PCR analysis of the barley gene (HvGI) showed the presence of a single mRNA species, with a peak of expression between 6 h and 9 h after dawn in short days (8 h light) and a peak 15 h after dawn in long days (16 h light). This behaviour is similar to that seen in Arabidopsis and rice, showing that sequence and expression pattern were well conserved. A lack of correspondence with the map positions of QTL affecting flowering time (heading date) suggests that variation at HvGI does not provide a major source of adaptive variation in photoperiod response.  相似文献   

16.
Barley stripe mosaic virus-induced gene silencing in a monocot plant   总被引:35,自引:0,他引:35  
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.  相似文献   

17.
Ethylene has been shown to be involved in triggering pathogenesis-related (PR) gene expression mainly in dicotyledonous species; however, less attention has been devoted identifying and characterizing PR genes in rice (Oryza sativa L.), a monocot and a model of cereal crop genera. Here, we demonstrate that ethylene induces at least three important rice PR genes, the PR10, PR1 basic (PR1b), and PR5 genes in rice (cv. Nipponbare) seedling leaf, upon treatment with the ethylene generator, ethephon (ET), in a light-, time- and dose-dependent manner. Induction of these PR genes was partially blocked by cycloheximide (CHX), a eukaryotic cytoplasmic protein synthesis inhibitor, which indicates an involvement of cytoplasmic de novo protein synthesis in their induction. These results clearly indicate a dynamic role for ethylene in PR genes induction in rice.  相似文献   

18.
Barley homolog of the Arabidopsis necrotic (disease lesion mimic) mutant HLM1 that encodes the cyclic nucleotide-gated ion channel 4 was cloned. Barley gene was mapped genetically to the known necrotic locus nec1 and subsequent sequence analysis identified mutations in five available nec1 alleles confirming barley homolog of Arabidopsis HLM1 as the NEC1 gene. Two fast neutron (FN) induced mutants had extensive deletions in the gene, while two previously described nec1 alleles had either a STOP codon in exon 1 or a MITE insertion in intron 2 which caused alternative splicing, frame shift and production of a predicted non-functional protein. The MITE insertion was consistent with the reported spontaneous origin of the nec1 Parkland allele. The third FN mutant had a point mutation in the coding sequence which resulted in an amino acid change in the conserved predicted cyclic nucleotide-gated ion channel pore region. The expression of two pathogenesis-related genes, HvPR-1a and β-1,3-glucanase, was elevated in two FN necrotic lines. Ten other members of the barley cyclic nucleotide-gated ion channel gene family were identified and their position on barley linkage map is reported. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic barley (Hordeum vulgare L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by either a rice actin promoter or a barley endosperm-specific d-hordein promoter. The gene encoding phosphinothricin acetyltransferase (bar), driven by the maize ubiquitin promoter and intron, was used as a selectable marker to identify transgenic tissues. Strong GFP expression driven by the rice actin promoter was observed in callus cells and in a variety of tissues of T0 plants transformed with the sgfp(S65T)-containing construct. GFP expression, driven by the rice actin promoter, was observed in 14 out of 17 independent regenerable transgenic callus lines; however, expression was gradually lost in T0 and later generation progeny of diploid lines. Stable GFP expression was observed in T2 progeny from only 6 out of the 14 (43%) independent GFP-expressing callus lines. Four of the 8 lines not expressing GFP in T2 progeny, lost GFP expression during T0 plant regeneration from calli; one lost GFP expression in the transition from the T0 to T1 generations and three lines were sterile. Similarly, expression of bar driven by the maize ubiquitin promoter was lost in T1 progeny; only 21 out of 26 (81%) independent lines were Basta-resistant. In contrast to actin-driven expression, GFP expression driven by the d-hordein promoter exhibited endosperm-specificity. All seven lines transformed with d-hordein-driven GFP (100%) expressed GFP in the T1 and T2 generations, regardless of ploidy levels, and expression segregated in a Mendelian fashion. We conclude that the sgfp(S65T) gene was successfully transformed into barley and that GFP expression driven by the d-hordein promoter was more stable in its inheritance pattern in T1 and T2 progeny than that driven by the rice actin promoter or the bar gene driven by the maize ubiquitin promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号