首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present investigation was to evaluate the osteogenic properties of mesoporous Hydroxyapatite/Chitosan (HA/CS) composite in vitro and in vivo.HA/CS composite was successfully prepared and synthesized using a freeze-drying method,and then characterized by Scanning Electron Microscope (SEM).Results show that the mesoporous HA/CS composite presents high surface area and porosity.The effects of mesoporous HA/CS on early adhesion,proliferation and differentiation of osteoblast cells in vitro were measured.MTT cytotoxicity test and cell adhesion test show that the composite has good biocompatibility and promotes cell viability and proliferation.In vitro tests show that osteoblast-like cells on the composite surfaces are able to adhere,proliferate,and migrate through the pores.These cells maintained similar expression levels of osteoblastic-associated markers namely Collagen type Ⅰ (COL-I),Bone Morphogenetic Protein 2(BMP-2).Histologic analysis and radiological analysis in vivo also prove that mesoporous HA/CS composite can be used to repair bone defect as a new kind of bone grafting materials.  相似文献   

2.
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hierarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SLA) as well as Machined (M) surfaces respectively. The results show significant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.  相似文献   

3.
The cytotoxicity of Degutan surfaces with different degrees of roughness, and the effect of surface structures on osteoblast proliferation and differentiation, was investigated with standardised cell culture systems. Fibroblast cell lines (BALB/3T3) and osteoblast cell lines (hFOB 1.19) were used. The number and variability of the cells were determined for assessment of proliferation and alkaline phosphatase activity, collagen I and osteocalcin production were used as parameters for differentiation. In the early phase, the largest numbers of cells and greatest proliferation were measured on polished Degutan surfaces. In the late phase, however, larger numbers of cells and a greater degree of proliferation were to be seen on sandblasted and sandblasted/heat-treated Degutan surfaces. No differences were found for collagen I, osteocalcin production or alkaline phosphatase activity. Neither the osteoblasts nor the fibroblasts revealed a toxic effect of Degutan. The results for osteoblast differentiation correlate with recent studies on identical structured titanium surfaces. In view of the immeasurable amount of ion release, Degutan may be considered an ideal model for an inert material surface.  相似文献   

4.
Breast cancer cells frequently metastasize to the ends of long bones, ribs and vertebrae, structures which contain a rich microvasculature that is closely juxtaposed to metabolically active trabecular bone surfaces. This study focuses on the effects of osteoblast secretions on the surface presentation of adhesive proteins on skeletal vascular endothelial cells. Vascular endothelial cells were isolated from trabecular bone regions of the long bones of 7-week-old Swiss Webster mice and also from the central marrow cavity where trabecular bone is absent. Both types of endothelial cells were placed in culture for 7 days, then exposed 24 h to conditioned media from MC3T3-E1 osteoblasts. Conditioned medium (CM) from two different stages of osteoblast development were tested: (1) from immature MC3T3-E1 cells cultured for 5-7 days and (2) from mature MC3T3-E1 cells cultured for 28-30 days. The immature osteoblasts were in a stage of rapid proliferation; the mature osteoblasts formed a matrix that mineralized. Following exposure to the conditioned media, the vascular cells were exposed to anti-P-selectin, anti-E-selectin, anti-ICAM-1, and anti-VCAM-1 to detect the corresponding adhesive proteins on their surfaces. Breast cancer cells are known to bind to these adhesive proteins. Of the four proteins evaluated, E-selectin was consistently found on more cell surfaces (approximately 30%) of bone-derived vascular endothelial cells (BVECs) when exposed to the immature CM whereas vascular endothelial cells from marrow (MVECs) did not show this response to either immature CM or mature CM. These studies suggest that the BVEC blood vessels near immature bone cells express more surface adhesive protein that could enhance entrapment and extravasation of breast cancer cells. Once cancer cells have undergone extravasation into marrow adjacent to bone, they could be readily attracted to nearby bone surfaces.  相似文献   

5.
Ceramic materials with biological effects (bioceramic) have been found to modulate various biological effects, especially those effects involved in antioxidant activity and hydrogen peroxide scavenging. As arthropathy and osteopathy are the major chronic diseases of geriatric medicine, we explored the possible activity of bioceramic on these conditions using animal and cell models. Rabbits received intra-articular injections of lipopolysaccharides (LPS) to induce inflammation that mimic rheumatic arthritis. FDG isotopes were then IV injected for PET scan examinations at 16 hours and 7 days after the LPS injection. We examined and compared the bioceramic and control groups to see if bioceramic was capable of relieving inflammation in the joints by subtracting the final and initial uptake amount of FDG (max SUV). We studied the effects in prostaglandin E2 (PGE2) inhibition on the human chondrosarcoma (SW1353) cell line, and the effects on the murine osteoblast (MC3T3-E1) cell line under oxidative stress. All the subtractions between final and initial uptakes of FDG in the left knee joints of the rabbits after LPS injection indicated larger decreases in the bioceramic group than in the control group. This anti-arthritic or inflammatory effect was also demonstrated by the PGE2 inhibition of the SW1353 cells. We further proved that bioceramic treatment of the MC3T3-E1 cells resulted in increased viability of osteoblast cells challenged with hydrogen peroxide toxicity, and increased alkaline phosphatase activity and the total protein production of MC3T3-E1 cells under oxidative stress. Since LPS-induced arthritis is an experimental model that mimics RA, the potential therapeutic effects of bioceramic on arthropathy merit discussion. Bioceramic may contribute to relieving inflammatory arthritis and maintaining bone health.  相似文献   

6.
We studied the effects of BMP-7/OP-1 on growth and differentiation of bone marrow stromal cells. BMS2, a mouse bone marrow stromal cell line capable of differentiating into adipocytes and osteoblasts, were treated in a serum-free medium containing differentiation agents that favor the expression of both lineages. BMP-7/OP-1 stimulated cell proliferation and differentiation concomitantly. These effects were dose- and growth phase-dependent. Cells were more sensitive to the treatment early in the culture (30-40% confluence) with a significant increase in cell proliferation and markers of differentiation at low concentrations. When treated later in the growth phase (90-100% confluence), no significant increase in cell proliferation was seen. The concentration requirement for cells later in the culture to reach an equivalent degree of differentiation was 3-10- fold higher than for cells treated early. In both cases, the effects on adipocyte differentiation were biphasic; low concentrations stimulated adipocyte differentiation which was inhibited at higher concentrations where stimulation of osteoblast markers were observed. We conclude that cell proliferation and cell differentiation into adipocyte/osteoblast can occur simultaneously under BMP-7/OP-1 treatment.  相似文献   

7.
Lipid rafts play a key role in the regulation of fundamentally important cellular processes, including cell proliferation, differentiation, and survival. The composition of such detergent‐resistant microdomains (DRMs) is altered under pathologic conditions, including cancer. Although DRMs have been analyzed in colorectal carcinoma little information exists about their composition upon treatment with targeted drugs. Hence, a quantitative proteomic profiling approach was performed to define alterations within the DRM fraction of colorectal carcinoma cells upon treatment with the drug U0126, an inhibitor of the mitogen‐activated protein kinase pathway. Comparative expression profilings resulted in the identification of 300 proteins, which could partially be linked to key oncogenic signaling pathways and tumor‐related cellular features, such as cell proliferation, adhesion, motility, invasion, and apoptosis resistance. Most of these proteins were downregulated upon inhibitor treatment. In addition, quantitative proteomic profilings of cholesterol‐depleted versus intact lipid rafts were performed to define, which U0126‐regulated target structures represent bona fide raft proteins. Selected differentially abundant raft proteins were validated at the mRNA and/or protein level using U0126‐ or Trametinib‐treated cells. The presented data provide insights into the molecular mechanisms associated with the response to the treatment with MEK inhibitors and might also lead to novel candidates for therapeutic interventions.  相似文献   

8.
In rat osteoblast-like cells, a time-dependent sequence of growth and differentiation-dependent genes has been identified and a model of osteoblast differentiation in culture suggested. We investigated the expression of the bone matrix-associated proteins osteonectin and procollagen I and of the bone cell phenotype-related proteins alkaline phosphatase and osteocalcin during cell culture in primary human osteoblast like cells. Primary human explant cultures from nine young healthy donors were established under highly standardized conditions. Cells in the second passage were analyzed on different days from day 1 to 32, comparing cells growing under the influence of ascorbate with controls. Gene expression was determined by Northern blot analysis or polymerase chain reaction. Osteocalcin expression was also investigated after 1,25-(OH)(2)D(3) stimulation. On the protein level, newly synthesized collagen I, alkaline phosphatase activity, and secretion of osteocalcin were analyzed at all time points. On comparing our findings to the pattern of gene expression suggested for the rat calvarial osteoblast system, we found a similar developmental sequence for the so-called "proliferation" as well as a similar, but lengthened, sequence for the "matrix maturation stage." During "matrix maturation," we found an ongoing proliferation despite increased alkaline phosphatase and decreased procollagen I gene expression. Our study, therefore, shows that in pHOB the gene expression profile proceeded to the "matrix maturation stage," as defined by Owen and colleagues, independent of ongoing proliferation. We were unable to observe the mineralization period as demonstrated by the missing increase of osteocalcin expression and lack of nodule formation in our human osteoblast model. In contrast to the rat system, we found a proliferation stimulating influence of ascorbate, suggesting species-specific differences in response to differentiation factors. From these data, we conclude that general considerations on physiology and pathophysiology of bone cell differentiation have to be confirmed in the human osteoblastic cell system.  相似文献   

9.
10.
We present here the first proteomics analysis of uveal melanoma (UM) cells. These cells represent a good model for the identification of polypeptide markers, which could be developed as diagnostic tools. UM is the most common primary intraocular tumour in adults. In contrast to other cancers, the survival rate of patients with this malignancy has changed little over the past few decades; a better understanding of the molecular biology of UM oncogenesis and metastasis is needed to build the basis for the identification of novel drug targets. In the study presented here, proteins from a UM primary cell culture were separated by 2-DE using a pI 3-10 gradient; 270 spots were analysed by LC-MS/MS, identifying 683 proteins derived from 393 different genes. Of those, 69 (18%) are related to cancer processes involving cell division, proliferation, invasion, metastasis, oncogenesis, drug resistance and others. To our knowledge, 96% of the proteins identified, including 16 hypothetical proteins, have never been reported in UM before. This study represents the first step towards the establishment of a UM protein database as a valuable resource for the study of this malignancy.  相似文献   

11.
Kindlins are focal adhesion proteins that regulate integrin signaling. Although integrin activation is critical for bone development, little is known about the expression and role of kindlins in osteoblasts. We therefore investigated the function of kindlin-2 in osteoblast adhesion, spreading, and proliferation using small interfering RNA. In MC3T3-E1 cells, only kindlin-2 is highly expressed and localizes to focal adhesion. We found that kindlin-2 was involved in integrin activation in MC3T3-E1 cells and that kindlin-2 knockdown osteoblasts resulted in diminished cell adhesion, spreading, and proliferation. In this process, kindlin-2 knockdown impaired transient Rac1 activation, influencing Akt activation and AP-1 activity. In agreement with these data, pharmacological inhibition of Rac1 reduced MC3T3-E1 cell adhesion, spreading, and proliferation. Overall, these findings demonstrated that kindlin-2 governs Rac1 activation, which controls osteoblast function. Our findings provide the first insights concerning the function of kindlin-2 in osteoblast, and suggest that kindlin-2 is a critical mediator for osteoblast physiology.  相似文献   

12.
Successful osseointegration of an implant depends on the properties of the material of which it is made. A standardized cell culture system for the assessment of the biological effect of material surfaces has already been described. In the present study, this system has been extended to include the quantitative analysis of the material-dependent osteoblast gene expression. Human foetal osteoblasts (hFOB 1.19) were cultured for 3 weeks on titanium surfaces of varying roughness, and on surfaces of chromium-cobalt-molybdenum alloy (CrCoMo). Using a real time RT-PCR technique, expressions of alkaline phosphatase, collagen 1 and osteocalcin were determined as parameters of osteoblast differentiation. In comparison with CrCoMo, differentiation was accelerated on titanium. While the smooth titanium surface leads to earlier cell growth, the rough surface induces more prolonged and stronger cell proliferation. Our results confirm at the molecular level the excellent clinical biocompatibility of titanium surfaces. The real-time RT-PCR provides a new method for the quantitative assessment of material-dependent osteoblastic differentiation.  相似文献   

13.
Polyhydroxyalkanoates (PHA) are hydrophobic biopolymers with huge potential for biomedical applications due to their biocompatibility, excellent mechanical properties and biodegradability. A porous composite scaffold made of medium‐chain‐length poly(3‐hydroxyalkanoates) (mcl‐PHA) and hydroxyapatite (HA) was fabricated using particulate leaching technique and NaCl as a porogen. Different percentages of HA loading was investigated that would support the growth of osteoblast cells. Ultrasonic irradiation was applied to facilitate the dispersion of HA particles into the mcl‐PHA matrix. The different P(3HO‐co‐3HHX)/HA composites were investigated using field emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD) and energy dispersive X‐ray analysis (EDXA). The scaffolds were found to be highly porous with interconnecting pore structures and the HA particles were homogeneously dispersed in the polymer matrix. The scaffolds biocompatibility and osteoconductivity were also assessed following the proliferation and differentiation of osteoblast cells on the scaffolds. From the results, it is clear that scaffolds made from P(3HO‐co‐3HHX)/HA composites are viable candidate materials for bone tissue engineering applications.  相似文献   

14.
Hydroxyapatite (HA), a bioceramic, is a widely utilized material for bone tissue repair and regeneration because of its excellent properties such as biocompatibility, exceptional mechanical strength, and osteoconductivity. HA can be obtained by both synthetic and natural means. Animal bones are often considered a promising natural resource for the preparation of pure HA for biological and biomedical applications. Cuttlefish bone, also called as cuttlebone, mainly consists of calcium carbonate, and pure HA can be produced by adding phosphoric acid or ammonium hydrogen phosphate to it. Recently, cuttlefish bone-derived HA has shown promising results in terms of bone tissue repair and regeneration. The synthesized cuttlefish bone-derived has shown excellent biocompatibility, cell proliferation, increased alkaline phosphate activity, and efficient biomineralization ability with mesenchymal stem cells and osteoblastic cells. To further improve the biological properties of cuttlefish bone-derived HA, bioglass, polycaprolactone, and polyvinyl alcohol were added to it, which gave better results in terms of cell proliferation and osteogenic differentiation. Cuttlefish bone-derived HA with polymeric substances provides excellent bone formation under in vivo conditions. The studies indicate that cuttlefish bone-derived HA, along with polymeric and, protein materials, will be promising biomaterials in the field of bone tissue regeneration.  相似文献   

15.
The effect of titanium-based PVD coatings and a titanium alloy on the proliferation and differentiation of osteoblasts was investigated using a standardised cell culture system. Human fetal osteoblasts (hFOB 1.19) were cultured on titanium-niobium-nitride ([Ti,Nb]N), titanium-niobium-oxy-nitride coatings ([Ti,Nb]ON) and titanium-aluminium-vanadium alloy (Ti6Al4V) for 17 days. Cell culture polystyrene (PS) was used as reference. For the assessment of proliferation, the numbers and viability of the cells were determined, while alkaline phosphatase activity, collagen I and osteocalcin synthesis served as differentiation parameters. On the basis of the cell culture experiments, a cytotoxic effect of the materials can be excluded. In comparison with the other test surfaces, [Ti,Nb]N showed greater cell proliferation. The [Ti,Nb]N coating was associated with the highest level of osteocalcin production, while all other differentiation parameters were identical on all three surfaces. The test system described reveals the influence of PVD coatings on the osteoblast differentiation cycle. The higher oxygen content of the [Ti,Nb]ON surface does not appear to have any positive impact on cell proliferation. The excellent biocompatibility of the PVD coatings is confirmed by in vivo findings. The possible use of these materials in the fields of osteosynthesis and articular surfaces is still under discussion.  相似文献   

16.
17.
ABSTRACT: BACKGROUND: Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. RESULTS: MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 mug/ml; 1000 mug/ml; 500 mug/ml; 200 mug/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. CONCLUSIONS: The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery.  相似文献   

18.
Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and play an important role in development and in many cellular processes. We have found that BMP-2, BMP-6, and BMP-9 induce the most potent osteogenic differentiation of mesenchymal stem cells. Expression profiling analysis has revealed that the Inhibitors of DNA binding/differentiation (Id)-1, Id-2, and Id-3 are among the most significantly up-regulated genes upon BMP-2, BMP-6, or BMP-9 stimulation. Here, we sought to determine the functional role of these Id proteins in BMP-induced osteoblast differentiation. We demonstrated that the expression of Id-1, Id-2, and Id-3 genes was significantly induced at the early stage of BMP-9 stimulation and returned to basal levels at 3 days after stimulation. RNA interference-mediated knockdown of Id expression significantly diminished the BMP-9-induced osteogenic differentiation of mesenchymal progenitor cells. Surprisingly, a constitutive overexpression of these Id genes also inhibited osteoblast differentiation initiated by BMP-9. Furthermore, we demonstrated that BMP-9-regulated Id expression is Smad4-dependent. Overexpression of the three Id genes was shown to promote cell proliferation that was coupled with an inhibition of osteogenic differentiation. Thus, our findings suggest that the Id helix-loop-helix proteins may play an important role in promoting the proliferation of early osteoblast progenitor cells and that Id expression must be down-regulated during the terminal differentiation of committed osteoblasts, suggesting that a balanced regulation of Id expression may be critical to BMP-induced osteoblast lineage-specific differentiation of mesenchymal stem cells.  相似文献   

19.
Trophoblastic cell lines are widely used in in vitro studies of placental function as a surrogate for primary trophoblasts. To date, no reference proteomics dataset exists to directly compare the shared and unique characteristics of these cells. Here, we performed comparative proteomic profiling of the BeWo and HTR8/SVneo cell lines using label‐free quantitative MS. A total of 1557 proteins were identified, which included 338 uniquely attributed to BeWo cells, and a further 304 specifically identified in HTR8/SVneo cells. Raw data are available via ProteomeXchange, identifier PDX005045. Of the 915 proteins expressed by both cell lines, 105 were of higher abundance in BeWo cells, while 199 proteins had a significantly higher expression in HTR8/SVneo cells. Comparative GO of unique and upregulated proteins revealed principal differences in cell junction/adhesion, catenin complex, spindle and microtubule associated complex, as well as cell differentiation. Our data indicate that BeWo cells express an epithelial proteome more characteristic of villous trophoblasts, whereas HTR8/SVneo cells embrace a mesenchymal phenotype, more characteristic of extravillous trophoblasts. This novel comparative proteomic profiling of these trophoblastic cell lines provides a useful platform for future investigations of placental function.  相似文献   

20.
The role of the vitamin K dependent proteins, osteocalcin which is bone specific and matrix Gla protein (MGP) found in many tissues, has been studied by inhibition of synthesis of their characteristic amino acid, γ-carboxyglutamic acid (Gla) with the anticoagulant sodium warfarin. The effect of sodium warfarin on expression of these proteins, and other phenotypic markers of bone and cartilage during cellular differentiation and development of tissue extracellular matrix, was examined in several model systems. Parameters assayed include cell growth (reflected by histone gene expression) and collagen types I and II, osteopontin, alkaline phosphatase, and mineralization. Studies were carried out in calvarial bone organ cultures, normal diploid rat osteoblast and chondrocyte cultures, and rat osteosarcoma cell lines ROS 17/2.8 and 25/1. In normal diploid cells, warfarin consistently stimulated cell proliferation (twofold). In osteoblast cultures, MGP mRNA levels were generally increased (three to tenfold). Notably, MGP mRNA levels were not affected in chondrocyte cultures, either with chronic or acute warfarin treatments. Osteocalcin mRNA levels and synthesis were decreased up to 50% in ROS 17/2.8 cells and in chronically treated (1 and 5 μg/ml sodium warfarin) rat osteoblast cultures after 22 days. Early stages of osteoblast phenotype development from the proliferation period to initial tissue formation (nodules) appeared unaffected; while after day 14, further growth and mineralization of the nodule areas were significantly decreased in warfarin-treated cultures. In summary, warfarin has opposing effects on the expression of two vitamin K dependent proteins, MGP and osteocalcin, in osteoblast cultures and MGP is regulated differently between cartilage and bone as reflected by cellular mRNA levels. Additionally, warfarin effects expression of nonvitamin K dependent proteins which may reflect the influence of warfarin on endoplasmic reticulum associated enzymes. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号