首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteocytes are the most abundant cells in bone and there is increasing evidence that they control bone remodeling via direct cell-to-cell contacts and by soluble factors. In the present study, we have used the MLO-Y4 cell line to study the effect of osteocytes on the proliferation, differentiation and bone-forming capacity of bone marrow mesenchymal stem cells (MSC). Conditioned media (CM) from osteocytic MLO-Y4 and osteoblastic MC3T3-E1 cell lines were collected and added on mouse bone marrow cultures, in which MSC were induced to osteoblasts. There was a significant increase in alkaline phosphatase activity and osteocalcin expression in the presence of MLO-Y4 CM. No such stimulus could be observed with MC3T3-E1 CM. There was almost 4-fold increase in bone formation and up to 2-fold increase in the proliferation of MSC with MLO-Y4 CM. The highly proliferating bone marrow cells were negative for ALP and OCN, suggesting that they could represent early osteoblast precursors. MLO-Y4 CM did not enhance the viability of mature osteoblasts nor protected them of apoptosis. This is the first study to describe soluble signals between osteocytes and osteoblasts and there most likely are several still unidentified or unknown factors in osteocyte CM. We conclude that osteocytes have an active stimulatory role in controlling bone formation.  相似文献   

2.
It is well established that bone metastases comprise bone; however, the exact factors/mechanisms involved remain unknown. We hypothesized that tumor cells secreted factors capable of altering normal bone metabolism. The aims of the present study were to (1) determine the effects of secretory products isolated from HT-39 cells, a human breast cancer cell line, on osteoprogenitor cell (MC3T3-E1 cells) behavior, and (2) identify tumor-derived factor(s) that alters osteoblast activities. Conditioned media (CM) from HT-39 cells were collected following a 24-h serum-free culture. The ability of CM to alter gene expression in MC3T3-E1 cells was determined by Northern analysis. CM effects on cell proliferation and mineralization ability were determined using a Coulter counter and von Kossa stain, respectively. MC3T3-E1 cells were treated with CM plus noggin, a factor known to block bone morphogenic proteins (BMPs), to determine whether BMPs, shown to be present in CM, were linked with CM effects on MC3T3-E1 cell activity. In addition, inhibitors of MAP kinase kinase (MEK), protein kinase C (PKC), and protein kinase A were used to identify the intracellular signaling pathway(s) by which the active factors in CM regulated osteoblast behavior. CM treatment significantly enhanced BSP mRNA (2.5-fold over control), but had no effect on cell proliferation. Mineralization assay showed that CM enhanced mineral nodule formation compared to controls. Noggin inhibited CM-induced upregulation of BSP mRNA, suggesting that BMPs were responsible for upregulating BSP gene expression in MC3T3-E1 cells. The PKC inhibitor blocked CM-mediated upregulation of BSP, suggesting involvement of the PKC pathway in regulating BSP expression. BMPs secreted by HT-39 cells may be responsible for enhancing BSP expression in MC3T3-E1 cells. Continued studies targeted at determining the role of BMPs in regulating bone metabolism are important for understanding the pathogenesis of bone diseases.  相似文献   

3.
Upon termination of bone matrix synthesis, osteoblasts either undergo apoptosis or differentiate into osteocytes or bone lining cells. In this study, we investigated the role of matrix metalloproteinases (MMPs) and growth factors in the differentiation of osteoblasts into osteocytes and in osteoblast apoptosis. The mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts were either grown on two-dimensional (2-D) collagen-coated surfaces, where they morphologically resemble flattened, cuboidal bone lining cells, or embedded in three-dimensional (3-D) collagen gels, where they resemble dendritic osteocytes constituting a network of cells. When MC3T3-E1 osteoblasts were grown in a 3-D matrix in the presence of an MMP inhibitor (GM6001), the cell number was dose-dependently reduced by approximately 50%, whereas no effect was observed on a 2-D substratum. In contrast, the murine mature osteocyte cell line, MLO-Y4, was unaffected by GM6001 under all culture conditions. According to TUNEL assay, the osteoblast apoptosis was increased 2.5-fold by 10 microm GM6001. To investigate the mechanism by which MMPs mediate the survival of osteoblasts, we examined the effect of GM6001 on MC3T3-E1 osteoblasts in the presence of extracellular matrix components and growth factors, including tenascin, fibronectin, laminin, collagenase-cleaved collagen, gelatin, parathyroid hormone, basic fibroblast growth factor, vascular epidermal growth factor, insulin-like growth factor, interleukin-1, and latent and active transforming growth factor-beta (TGF-beta). Only active TGF-beta, but not latent TGF-beta or other agents tested, restored cell number and apoptosis to control levels. Furthermore, we found that the membrane type MMP, MT1-MMP, which is produced by osteoblasts, could activate latent TGF-beta and that antibodies neutralizing endogenous TGF-beta led to a similar decrease in cell number as GM6001. Whereas inhibitors of other protease families did not induce osteoblast apoptosis, an inhibitor of the p44/42 mitogen-activated protein kinase showed the same but non-synergetic effect as GM6001. These findings suggest that MMP-activated TGF-beta maintains osteoblast survival during trans-differentiation into osteocytes by a p44/42-dependent pathway.  相似文献   

4.
Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation — a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.  相似文献   

5.
Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation in vitro of both primary osteoblasts and MC3T3 cells by approximately 75%. To further investigate at which level of osteoblast differentiation MMP inhibition was attenuating osteoblast function, we found that neither preosteoblast nor mature osteoblast activity was affected. In contrast, cell survival of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from apoptosis when transdifferentiating into osteocytes. By examination of osteoblasts and osteocytes embedded in calvarial bone in the MT1-MMP deficient mice, we found that MT1-MMP deficient mice had 10-fold higher levels of apoptotic osteocytes than wild-type controls. We have previously shown that MT1-MMP activates latent Transforming Growth Factorbeta (TGF-beta). These findings strongly suggest that MT1-MMP-activated TGF-beta maintains osteoblast survival during transdifferentiation into osteocytes, and maintains mature osteocyte viability. Thus, the interrelationship of MMPs and TGF-beta may play an important role in bone formation and maintenance.  相似文献   

6.
Breast cancer cell colonization of osteoblast monolayers grown in standard tissue culture (2D) is compared to colonization of a multi-cell-layer osteoblastic tissue (3D) grown in a specialized bioreactor. Colonization of 3D tissue recapitulates events observed in clinical samples including cancer penetration of tissue, growth of microcolonies, and formation of "Single cell file" commonly observed in end-stage pathological bone tissue. By contrast, adherent cancer cell colonies did not penetrate 2D tissue and did not form cell files. Thus, it appears that 3D tissue is a more biologically (clinically) relevant model than 2D monolayers in which to study cancer cell interactions with osteoblastic tissue. This direct comparison of 2D and 3D formats is implemented using MC3T3-E1 murine osteoblasts and MDA-MB-231 human metastatic breast cancer cells, or the metastasis-suppressed line, MDA-MB-231BRMS1, for comparison. When osteoblasts were co-cultured with metastatic cells, production of osteocalcin (a mineralization marker) decreased and secretion of the pro-inflammatory cytokine IL-6 increased in both 2D and 3D formats. Cancer cell penetration of the 3D tissue coincided with a changed osteoblast morphology from cuboidal to spindle-shaped, and with osteoblasts alignment parallel to the cancer cells. Metastasis-suppressed cells did not penetrate 3D tissue, did not cause a change in osteoblast morphology or align in rows. Moreover, they proliferated much less in the 3D culture than in the 2D culture in a manner similar to their growth in bone. In both systems, the cancer cells proliferated to a greater extent with immature osteoblasts compared to more mature osteoblasts.  相似文献   

7.
The adipose tissue is the site of expression and secretion of a range of biologically active proteins, called adipokines, for example, leptin, adiponectin, and resistin. Leptin has previously been shown to be expressed in osteoblasts and to promote bone mineralization, whereas adiponectin expression is enhanced during osteoblast differentiation. In the present study we explored the possible role of resistin in bone metabolism. We found that resistin is expressed in murine preosteoclasts and preosteoblasts (RAW 264.7, MC3T3-E1), in primary human bone marrow stem cells and in mature human osteoblasts. The expression of resistin mRNA in RAW 264.7 was increased during differentiation and seemed to be regulated through PKC- and PKA-dependent mechanisms. Recombinant resistin increased the number of differentiated osteoclasts and stimulated NFkappaB promoter activity, indicating a role in osteoclastogenesis. Resistin also enhanced the proliferation of MC3T3-E1 cells in a PKA and PKC-dependent manner, but only weakly interfered with genes known to be upregulated during differentiation of MC3T3-E1 into osteoblasts. All together, our results indicate that resistin may play a role in bone remodeling.  相似文献   

8.
Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells   总被引:11,自引:0,他引:11  
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.  相似文献   

9.
Chronic long-term glucocorticoid use causes osteoporosis partly by interrupting osteoblast homeostasis and exacerbating bone loss. Arbutin, a natural hydroquinone glycoside, has been reported to have biological activities related to the differentiation of osteoblasts and osteoclasts. However, the role and underlying mechanism of arbutin in glucocorticoid-induced osteoporosis are elusive. In this study, we demonstrated that arbutin administration ameliorated osteoporotic disorders in glucocorticoid dexamethasone (Dex)-induced mouse model, including attenuating the loss of bone mass and trabecular microstructure, promoting bone formation, suppressing bone resorption, and activating autophagy in bone tissues. Furthermore, Dex-stimulated mouse osteoblastic MC3T3-E1 cells were treated with arbutin. Arbutin treatment rescued Dex-induced repression of osteoblast differentiation and mineralization, the downregulation of osteogenic gene expression, reduced autophagic marker expression, and decreased autophagic puncta formation. The application of autophagy inhibitor 3-MA decreased autophagy, differentiation, and mineralization of MC3T3-E1 cells triggered by arbutin. Taken together, our findings suggest that arbutin treatment fends off glucocorticoid-induced osteoporosis, partly through promoting differentiation and mineralization of osteoblasts by autophagy activation.  相似文献   

10.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

11.
Metastatic breast cancer cells co‐opt the cells of the bone to increase their production of inflammatory cytokines. Here, we sought to identify key cytokines expressed by osteoblasts in vitro and in vivo in the presence of MDA‐MB‐231 metastatic breast cancer cells, including a bone‐seeking variant. We hypothesized that osteoblast‐derived cytokines increase in the presence of metastatic breast cancer cell conditioned medium (CM), act as chemoattractants for cancer cells, and enhance osteoclast formation. We detected increases in the concentrations of osteoblast‐derived IL‐6, MCP‐1, VEGF, MIP‐2, and KC in vitro in culture supernatants from MC3T3‐E1 cells in the presence of metastatic breast cancer cell CM and from cancer‐bearing femurs ex vivo. A comparison of cancer cell‐ and osteoblast‐derived cytokines revealed that while breast cancer cells expressed the same or equivalent cytokines as the osteoblasts, the breast cancer cells only produced picogram quantities of MCP‐1; osteoblasts expressed nanogram amounts. Bone‐derived MCP‐1 increased in the proximal metaphysis, an area where breast cancer cells preferentially trafficked following intracardiac inoculation in athymic mice. An MDA‐MB‐231 bone‐seeking variant was not different from parental lines. Osteoblast CM was a potent chemoattractant for metastatic breast cancer cells. Furthermore, culture supernatants of osteoblasts treated with breast cancer cell CM enhanced osteoclast formation. These findings suggest that bone metastatic breast cancer cells utilize osteoblast‐derived cytokines to facilitate breast cancer cell colonization and survival upon arrival in the bone microenvironment. J. Cell. Biochem. 111: 1138–1148, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Kindlins are focal adhesion proteins that regulate integrin signaling. Although integrin activation is critical for bone development, little is known about the expression and role of kindlins in osteoblasts. We therefore investigated the function of kindlin-2 in osteoblast adhesion, spreading, and proliferation using small interfering RNA. In MC3T3-E1 cells, only kindlin-2 is highly expressed and localizes to focal adhesion. We found that kindlin-2 was involved in integrin activation in MC3T3-E1 cells and that kindlin-2 knockdown osteoblasts resulted in diminished cell adhesion, spreading, and proliferation. In this process, kindlin-2 knockdown impaired transient Rac1 activation, influencing Akt activation and AP-1 activity. In agreement with these data, pharmacological inhibition of Rac1 reduced MC3T3-E1 cell adhesion, spreading, and proliferation. Overall, these findings demonstrated that kindlin-2 governs Rac1 activation, which controls osteoblast function. Our findings provide the first insights concerning the function of kindlin-2 in osteoblast, and suggest that kindlin-2 is a critical mediator for osteoblast physiology.  相似文献   

13.
Human skeletal growth factor (hSGF), an 11-kD polypeptide purified from human bone, has been proposed to be a local regulator of bone formation. To investigate the underlying cellular mechanisms in an in vitro model system, we examined the effects of hSGF on proliferation and collagen synthesis in cells of the clonal osteoblast cell line MC3T3-E1. This line was isolated from newborn mouse calvarial cells and retains many characteristics of mature osteoblasts (Sudo, H., et al., (1984) J. Cell Biol. 96:191). A 14-hr treatment with hSGF increased noncollagenous protein synthesis to 215% of unstimulated controls and increased collagen synthesis to 630% of controls as determined by [3H]proline incorporation and high-pressure liquid chromatographic separation of [3H]proline and [3H]hydroxyproline in acid hydrolysates of trichloroacetic acid-insoluble protein. HSGF did not increase cell number over a 48-hr period and caused a reversible inhibition of DNA synthesis. Half-maximal hSGF concentration for stimulation of [3H]proline incorporation and inhibition of [3H]thymidine incorporation was 100 ng/ml. HSGF also inhibited DNA synthesis in cells stimulated by serum. In contrast, hSGF stimulated both collagen synthesis and DNA synthesis in primary cultures of chick embryo bone cells, which may be developmentally less mature than MC3T3-E1 cells. The results suggest that hSGF directly stimulated mature osteoblast matrix synthetic activity and that hSGF has differential effects on proliferation of osteoblast progenitor cells and mature osteoblasts.  相似文献   

14.
Lumican is a major proteoglycan component of the bone matrix.   总被引:2,自引:0,他引:2  
MC3T3-E1 mouse calvaria cells are a clonal population of committed osteoprogenitors that in the presence of appropriate supplements form a mineralized bone matrix. The development of the MC3T3-E1 cells can be divided into three major stages, namely, proliferation, differentiation, and mineralization. Recently, using the cDNA microarray technology we found lumican to be abundantly expressed during the mineralization and differentiation stages of the MC3T3-E1 development and not during the proliferation stage. Lumican has been shown to play essential roles in regulating collagen fibril formation in different extracellular matrices but its expression in the developing bone matrix remains elusive. By examining the expression profile of this gene during the different stages of MC3T3-E1 development, utilizing the 'real-time' PCR technology, we observed that the expression of lumican increases as the osteoblast culture differentiates and matures, suggesting that lumican may be involved in regulating collagen fibrillogenesis in bone matrices. Using immunostaining, we observed that during the early embryonic development of mouse (E11 to E13), lumican is mainly expressed in the cartilaginous matrices. However, in the older embryos (E14 to E16), the expression of lumican is more prominent in the developing bone matrices. Our data suggest that lumican is a significant proteoglycan component of bone matrix, which is secreted by differentiating and mature osteoblasts only and therefore it can be used as a marker to distinguish proliferating pre-osteoblasts from the differentiating osteoblasts.  相似文献   

15.
The orphan nuclear receptor Nurr1 is primarily expressed in the central nervous system. It has been shown that Nurr1 is necessary for terminal differentiation of dopaminergic (DA) neurons in ventral midbrain. The receptor, however, is also expressed in other organs including bone, even though the role of Nurr1 is not yet understood. Therefore, we investigated the role of Nurr1 in osteoblast differentiation in MC3T3-E1 cells and calvarial osteoblasts derived from Nurr1 null newborn pups. Our results revealed that reduced Nurr1 expression, using Nurr1 siRNA in MC3T3-E1 cells, affected the expression of osteoblast differentiation marker genes, osteocalcin (OCN) and collagen type I alpha 1 (COL1A1), as measured by quantitative real-time PCR. The activity of alkaline phosphatase (ALP), another osteoblast differentiation marker gene, was also decreased in Nurr1 siRNA-treated MC3T3-E1 cells. In addition, Nurr1 overexpression increased OCN and COL1A1 expression. Furthermore, consistent with these results, during osteoblast differentiation, the expression of osteoblast marker genes was decreased in primary cultured mouse calvarial osteoblasts derived from Nurr1 null mice. Collectively, our results suggest that Nurr1 is important for osteoblast differentiation.  相似文献   

16.
In immature and mature primary cultured rat calvarial osteoblasts, both mRNA and corresponding proteins were constitutively expressed for 2 splice variants of GABA(B) receptor (GABA(B)R) subunits but not for any known GABA(A) and GABA(C) receptor subunits. The agonist for GABA(B)R baclofen significantly inhibited cAMP formation induced by forskolin in a manner sensitive to the antagonist 2-hydroxysaclofen. Similar expression was seen with mRNA for GABA(B)R-1a and -1b splice variants in the murine calvarial osteoblast cell line MC3TC-E1 cells cultured for 7-21 days in vitro (DIV). In these MC3T3-E1 cells, baclofen not only inhibited the activity of alkaline phosphatase, but also exacerbated Ca2+ accumulation, throughout the culture period up to 28 DIV. These results suggest that GABA may play an unidentified role in mechanisms associated with cellular proliferation, differentiation, and/or development through functional GABA(B)R constitutively expressed in cultured osteoblasts.  相似文献   

17.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

18.
CCAAT/enhancer binding protein beta (C/EBPbeta) is known to play an important role in the expression of several genes necessary for bone development and homeostasis including osteocalcin, IGF-1, and IL-6. In this study, we show that C/EBPbeta protein levels and, consequently, DNA-binding activity are temporally regulated, dramatically decreasing upon differentiation of MC3T3-E1 mouse osteoblasts. Corresponding with these results, the constitutive expression of C/EBPbeta LAP in MC3T3-E1 osteoblasts increased proliferation and suppressed osteogenic differentiation. Thus, C/EBPbeta LAP not only appears to participate in the regulation of genes associated with mature bone physiology, but is also a critical regulator of osteoblast growth and differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号