首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is an urgent need for bioinformatic methods that allow integrative analysis of multiple microarray data sets. While previous studies have mainly concentrated on reproducibility of gene expression levels within or between different platforms, we propose a novel meta-analytic method that takes into account the vast amount of available probe-level information to combine the expression changes across different studies. We first show that the comparability of relative expression changes and the consistency of differentially expressed genes between different Affymetrix array generations can be considerably improved by determining the expression changes at the probe-level and by considering the latest information on probe-level sequence matching instead of the probe annotations provided by the manufacturer. With the improved probe-level expression change estimates, data from different generations of Affymetrix arrays can be combined more effectively. This will allow for the full exploitation of existing results when designing and analyzing new experiments.  相似文献   

3.
We have conducted a study to compare the variability in measured gene expression levels associated with three types of microarray platforms. Total RNA samples were obtained from liver tissue of four male mice, two each from inbred strains A/J and C57BL/6J. The same four samples were assayed on Affymetrix Mouse Genome Expression Set 430 GeneChips (MOE430A and MOE430B), spotted cDNA microarrays, and spotted oligonucleotide microarrays using eight arrays of each type. Variances associated with measurement error were observed to be comparable across all microarray platforms. The MOE430A GeneChips and cDNA arrays had higher precision across technical replicates than the MOE430B GeneChips and oligonucleotide arrays. The Affymetrix platform showed the greatest range in the magnitude of expression levels followed by the oligonucleotide arrays. We observed good concordance in both estimated expression level and statistical significance of common genes between the Affymetrix MOE430A GeneChip and the oligonucleotide arrays. Despite their apparently high precision, cDNA arrays showed poor concordance with other platforms.  相似文献   

4.
MOTIVATION: A major focus of current cancer research is to identify genes that can be used as markers for prognosis and diagnosis, and as targets for therapy. Microarray technology has been applied extensively for this purpose, even though it has been reported that the agreement between microarray platforms is poor. A critical question is: how can we best combine the measurements of matched genes across microarray platforms to develop diagnostic and prognostic tools related to the underlying biology? RESULTS: We introduce a statistical approach within a Bayesian framework to combine the microarray data on matched genes from three investigations of gene expression profiling of B-cell chronic lymphocytic leukemia (CLL) and normal B cells (NBC) using three different microarray platforms, oligonucleotide arrays, cDNA arrays printed on glass slides and cDNA arrays printed on nylon membranes. Using this approach, we identified a number of genes that were consistently differentially expressed between CLL and NBC samples.  相似文献   

5.
The widespread use of DNA microarrays has led to the discovery of many genes whose expression profile may have significant clinical relevance. The translation of this data to the bedside requires that gene expression be validated as protein expression, and that annotated clinical samples be available for correlative and quantitative studies to assess clinical context and usefulness of putative biomarkers. We review two microarray platforms developed to facilitate the clinical validation of candidate biomarkers: tissue microarrays and reverse-phase protein microarrays. Tissue microarrays are arrays of core biopsies obtained from paraffin-embedded tissues, which can be assayed for histologically-specific protein expression by immunohistochemistry. Reverse-phase protein microarrays consist of arrays of cell lysates or, more recently, plasma or serum samples, which can be assayed for protein quantity and for the presence of post-translational modifications such as phosphorylation. Although these platforms are limited by the availability of validated antibodies, both enable the preservation of precious clinical samples as well as experimental standardization in a high-throughput manner proper to microarray technologies. While tissue microarrays are rapidly becoming a mainstay of translational research, reverse-phase protein microarrays require further technical refinements and validation prior to their widespread adoption by research laboratories.  相似文献   

6.
Microarrays have been widely used for the analysis of gene expression, but the issue of reproducibility across platforms has yet to be fully resolved. To address this apparent problem, we compared gene expression between two microarray platforms: the short oligonucleotide Affymetrix Mouse Genome 430 2.0 GeneChip and a spotted cDNA array using a mouse model of angiotensin II-induced hypertension. RNA extracted from treated mice was analyzed using Affymetrix and cDNA platforms and then by quantitative RT-PCR (qRT-PCR) for validation of specific genes. For the 11,710 genes present on both arrays, we assessed the relative impact of experimental treatment and platform on measured expression and found that biological treatment had a far greater impact on measured expression than did platform for more than 90% of genes, a result validated by qRT-PCR. In the small number of cases in which platforms yielded discrepant results, qRT-PCR generally did not confirm either set of data, suggesting that sequence-specific effects may make expression predictions difficult to make using any technique.  相似文献   

7.
To facilitate collaborative research efforts between multi-investigator teams using DNA microarrays, we identified sources of error and data variability between laboratories and across microarray platforms, and methods to accommodate this variability. RNA expression data were generated in seven laboratories, which compared two standard RNA samples using 12 microarray platforms. At least two standard microarray types (one spotted, one commercial) were used by all laboratories. Reproducibility for most platforms within any laboratory was typically good, but reproducibility between platforms and across laboratories was generally poor. Reproducibility between laboratories increased markedly when standardized protocols were implemented for RNA labeling, hybridization, microarray processing, data acquisition and data normalization. Reproducibility was highest when analysis was based on biological themes defined by enriched Gene Ontology (GO) categories. These findings indicate that microarray results can be comparable across multiple laboratories, especially when a common platform and set of procedures are used.  相似文献   

8.
Matching genes across microarray platforms is a critical step in meta-analysis. Standard practice uses UniGene to match genes. Numerous studies have found poor correlations between platforms when using UniGene matching.We profiled samples from 33 breast cancer patients on two different microarray platforms (Affymetrix and cDNA) and investigated gene matching. Our results confirmed that UniGene-based matching led to poor correlations of gene expression between platforms. Using RefSeq, a database maintained by the National Center for Biotechnology Information (NCBI), we developed and implemented a new method to refine gene matching. We found that the correlations between gene expression measurements were substantially higher after the RefSeq matching. Our approach differs from previously reported sequence-matching approaches and retains useful expression measurements. It is a sensible approach for matching probes across platforms.We conclude that UniGene alone is insufficient to match genes across platforms. Refined matching based on RefSeq significantly improves the quality of matches.  相似文献   

9.
Zhu B  Ping G  Shinohara Y  Zhang Y  Baba Y 《Genomics》2005,85(6):657-665
As the data generated by microarray technology continue to amass, it is necessary to compare and combine gene expression data from different platforms. To evaluate the performance of cDNA and long oligonucleotide (60-mer) arrays, we generated gene expression profiles for two cancer cell lines and compared the data between the two platforms. All 6182 unique genes represented on both platforms were included in the analysis. A limited correlation (r = 0.4708) was obtained and the difference in measurement of low-expression genes was considered to contribute to the limited correlation. Further restriction of the data set to differentially expressed genes detected in cDNA microarrays (1205 genes) and oligonucleotide arrays (1325 genes) showed modest correlations of 0.7076 and 0.6441 between the two platforms. Quantitative real-time PCR measurements of a set of 10 genes showed better correlation with oligonucleotide arrays. Our results demonstrate that there is substantial variation in the data generated from cDNA and 60-mer oligonucleotide arrays. Although general agreement was observed in measurements of differentially expressed genes, we suggest that data from different platforms could not be directly amassed.  相似文献   

10.

Background

Several preprocessing algorithms for Affymetrix gene expression microarrays have been developed, and their performance on spike-in data sets has been evaluated previously. However, a comprehensive comparison of preprocessing algorithms on samples taken under research conditions has not been performed.

Methodology/Principal Findings

We used TaqMan RT-PCR arrays as a reference to evaluate the accuracy of expression values from Affymetrix microarrays in two experimental data sets: one comprising 84 genes in 36 colon biopsies, and the other comprising 75 genes in 29 cancer cell lines. We evaluated consistency using the Pearson correlation between measurements obtained on the two platforms. Also, we introduce the log-ratio discrepancy as a more relevant measure of discordance between gene expression platforms. Of nine preprocessing algorithms tested, PLIER+16 produced expression values that were most consistent with RT-PCR measurements, although the difference in performance between most of the algorithms was not statistically significant.

Conclusions/Significance

Our results support the choice of PLIER+16 for the preprocessing of clinical Affymetrix microarray data. However, other algorithms performed similarly and are probably also good choices.  相似文献   

11.
Multiple commercial microarrays for measuring genome-wide gene expression levels are currently available, including oligonucleotide and cDNA, single- and two-channel formats. This study reports on the results of gene expression measurements generated from identical RNA preparations that were obtained using three commercially available microarray platforms. RNA was collected from PANC-1 cells grown in serum-rich medium and at 24 h following the removal of serum. Three biological replicates were prepared for each condition, and three experimental replicates were produced for the first biological replicate. RNA was labeled and hybridized to microarrays from three major suppliers according to manufacturers’ protocols, and gene expression measurements were obtained using each platform’s standard software. For each platform, gene targets from a subset of 2009 common genes were compared. Correlations in gene expression levels and comparisons for significant gene expression changes in this subset were calculated, and showed considerable divergence across the different platforms, suggesting the need for establishing industrial manufacturing standards, and further independent and thorough validation of the technology.  相似文献   

12.
We have evaluated the performance characteristics of three quantitative gene expression technologies and correlated their expression measurements to those of five commercial microarray platforms, based on the MicroArray Quality Control (MAQC) data set. The limit of detection, assay range, precision, accuracy and fold-change correlations were assessed for 997 TaqMan Gene Expression Assays, 205 Standardized RT (Sta)RT-PCR assays and 244 QuantiGene assays. TaqMan is a registered trademark of Roche Molecular Systems, Inc. We observed high correlation between quantitative gene expression values and microarray platform results and found few discordant measurements among all platforms. The main cause of variability was differences in probe sequence and thus target location. A second source of variability was the limited and variable sensitivity of the different microarray platforms for detecting weakly expressed genes, which affected interplatform and intersite reproducibility of differentially expressed genes. From this analysis, we conclude that the MAQC microarray data set has been validated by alternative quantitative gene expression platforms thus supporting the use of microarray platforms for the quantitative characterization of gene expression.  相似文献   

13.
14.
15.
We describe a high throughput gene expression platform based on microfluidic dynamic arrays. This system allows 2,304 simultaneous real time PCR gene expression measurements in a single chip, while requiring less pipetting than is required to set up a 96 well plate. We show that one can measure the expression of 45 different genes in 18 tissues with replicates in a single chip. The data have excellent concordance with conventional real time PCR and the microfluidic dynamic arrays show better reproducibility than commercial DNA microarrays.  相似文献   

16.
DNA microarray technology has been widely used to simultaneously determine the expression levels of thousands of genes. A variety of approaches have been used, both in the implementation of this technology and in the analysis of the large amount of expression data. However, several practical issues still have not been resolved in a satisfactory manner, and among the most critical is the lack of agreement in the results obtained in different array platforms. In this study, we present a comparison of several microarray platforms [Affymetrix oligonucleotide arrays, custom complementary DNA (cDNA) arrays, and custom oligo arrays printed with oligonucleotides from three different sources] as well as analysis of various methods used for microarray target preparation and the reference design. The results indicate that the pairwise correlations of expression levels between platforms are relative low overall but that the log ratios of the highly expressed genes are strongly correlated, especially between Affymetrix and cDNA arrays. The microarray measurements were compared with quantitative real-time-polymerase chain reaction (QRT-PCR) results for 23 genes, and the varying degrees of agreement for each platform were characterized. We have also developed and tested a double amplification method which allows the use of smaller amounts of starting material. The added round of amplification produced reproducible results as compared to the arrays hybridized with single round amplified targets. Finally, the reliability of using a universal RNA reference for two-channel microarrays was tested and the results suggest that comparisons of multiple experimental conditions using the same control can be accurate.  相似文献   

17.
During the last several years, high-density genotyping SNP arrays have facilitated genome-wide association studies (GWAS) that successfully identified common genetic variants associated with a variety of phenotypes. However, each of the identified genetic variants only explains a very small fraction of the underlying genetic contribution to the studied phenotypic trait. Moreover, discordance observed in results between independent GWAS indicates the potential for Type I and II errors. High reliability of genotyping technology is needed to have confidence in using SNP data and interpreting GWAS results. Therefore, reproducibility of two widely genotyping technology platforms from Affymetrix and Illumina was assessed by analyzing four technical replicates from each of the six individuals in five laboratories. Genotype concordance of 99.40% to 99.87% within a laboratory for the sample platform, 98.59% to 99.86% across laboratories for the same platform, and 98.80% across genotyping platforms was observed. Moreover, arrays with low quality data were detected when comparing genotyping data from technical replicates, but they could not be detected according to venders' quality control (QC) suggestions. Our results demonstrated the technical reliability of currently available genotyping platforms but also indicated the importance of incorporating some technical replicates for genotyping QC in order to improve the reliability of GWAS results. The impact of discordant genotypes on association analysis results was simulated and could explain, at least in part, the irreproducibility of some GWAS findings when the effect size (i.e. the odds ratio) and the minor allele frequencies are low.  相似文献   

18.
19.
20.
Integrative analyses of multiple gene expression studies are frequently performed. In the setting of two studies, integrative correlation (IGC) can be used to assess the consistency of co-expression of a given gene. For three or more studies, an extension of IGC gives a global score per gene. We propose to extend IGC and use factor analysis to assess the study-specific consistency of co-expression of genes when there are three or more studies, possibly on different platforms. Our method is able to identify studies whose expression patterns are different from others. Filtering genes based on our score is shown to improve the concordance of association with phenotype across studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号