首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoextraction is a technique using a hyperaccumulator to remove heavy metals from soil. The efficiency of heavy metal uptake can be enhanced by the inoculation of endophytes. In this study, we isolated and identified 23 endophytes from Chromolaena odorata, a cadmium (Cd) hyperaccumulator that consisted of 19 bacteria, 2 actinomycetes and 2 fungi. All bacteria and fungi could produce at least 1 plant growth promoting factors. However, only 4 bacterial isolates; Paenibacillus sp. SB12, Bacillus sp. SB31, Bacillus sp. LB51, and Alcaligenes sp. RB54 showed the highest minimum inhibitory concentration (MIC) value (2.9 mM), followed by Exiguobacterium sp.RB51 (1.7 mM). Then, these 5 high-MIC bacteria and 1 low-MIC bacterium, Bacillus sp. LB15 were inoculated onto sunflower grown in soil supplemented with 250 mg/kg of Cd. After 60 days, all inoculated plants accumulated significantly higher Cd concentration than the non-inoculated counterparts, and those inoculated with strain LB51 showed the highest Cd accumulation and growth. Interestingly, strain LB15 with low MIC also enhanced Cd accumulation in plants. The results suggest that these bacteria, particularly strain LB51, could be applied to improve Cd accumulation in plants, and that bacteria with low MIC also have the potential to enhance the efficiency of phytoextraction.  相似文献   

2.
The present study relates to the use of cyanobacterium Nostoc muscorum as a model system for removal of heavy metals such as Pb and Cd from aquatic systems. The effects of various physicochemical factors on the surface binding and intracellular uptake of Pb and Cd were studied to optimize the metal removal efficiency of the living cells of N. muscorum. Results demonstrated that a significant proportion of Pb and Cd removal was mediated by surface binding of metals (85 % Pb and 79 % Cd), rather than by intracellular accumulation (5 % Pb and 4 % Cd) at the optimum level of cyanobacterial biomass (2.8 g L?1), metal concentration (80 μg mL?1), pH (pH 5.0–6.0), time (15–30 min), and temperature (30–40 °C). N. muscorum has maximum amounts of metal removal (q max) capacity of 833 and 666.7 mg g?1 protein for Pb and Cd, respectively. The kinetic parameters of metal binding revealed that adsorption of Pb and Cd by N. muscorum followed pseudo-second-order kinetics, and the adsorption behavior was better explained by both Langmuir and Freundlich isotherm models. The surface binding of both the metals was apparently facilitated by the carboxylic, hydroxyl, and amino groups as evident from Fourier transform infrared spectra.  相似文献   

3.
In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II) and Mn(II) was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II) and Mn(II), respectively. Two models were investigated to compare the cells’ capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water.  相似文献   

4.
The effects of cadmium (Cd (II)) on absorption, excretion, and distribution of nickel (Ni (II)) were studied in rats using 63Ni-NiCl2 as radiotracer in the presence and absence of CdCl2, through intraperitoneal injection (i.p.). The time–concentration curves in the blood were fitted with a two-compartment model. The peak time (t (peak)) is 0.31 h in the absence of Cd (II), and it is 5.5 h in the presence of Cd (II). The levels of nickels were higher at 3 h and lower (close to zero) at 24 h in all organs of interest, except kidneys, in the absence of Cd (II). There still residue Ni (II) at 72 h post-injection in the presence of Cd (II). The Cd (II) did effect the total Ni (II) excretion 24 h post-injection. Our study showed that cadmium has a competitive effect on the absorption of nickel and an inhibitory effect on the elimination of it, so cadmium may induce the bioaccumulation of nickel in the body.  相似文献   

5.
The present study was undertaken to assess the non-carcinogenic human health risk of heavy metals through the ingestion of locally grown and commonly used vegetables viz. Raphanus sativus (root vegetable), Daucus carota (root vegetable), Benincasa hispida (fruit vegetable) and Brassica campestris leaves (leafy vegetable) in a semi-urbanized area of Haryana state, India. Heavy metal quantification of soil and vegetable samples was done using flame atomic absorption spectrophotometer. Lead, cadmium and nickel concentration in vegetable samples varied in range of 0.12–6.54 mg kg?1, 0.02–0.67 mg kg?1 and <0.05–0.41 mg kg?1, respectively. Cadmium and lead concentration in some vegetable samples exceeded maximum permissible limit given by World Health Organization/Food and Agriculture Organization and Indian standards. Much higher concentrations of Pb (40–190.5 mg kg?1), Cd (0.56–9.85 mg kg-1) and Ni (3.21–45.87 mg kg?1) were reported in corresponding vegetable fields’ soils. Correlation analysis revealed the formation of three primary clusters, i.e. Cu–Cd, Cd–Pb and Ni–Zn in vegetable fields’ soils further supported by cluster analysis and principal component analysis. Bioconcentration factor revealed that heavy metals’ uptake was more by leafy vegetable than root and fruit vegetables. Hazard index of all the vegetables was less than unity; thus, the ingestion of these vegetables is unlikely to pose health risks to the target population.  相似文献   

6.
Growth of Cyanidioschyzon merolae was inhibited depending on the cadmium(II) concentration in the culture medium. Although a lower level (0.01 mM) of Cd(II) inhibited growth by a factor of 0.5, higher levels (0.1 and 1 mM) induced lag periods of 10–14 days. Algal cells pretreated with 1 mM Cd(II) for 27 days grew steadily in 1 mM Cd(II) without the lag period, demonstrating that the cells became Cd(II) resistant (CdR). Cells remained resistant after four cycles (7 days per cycle) of washing and re-growing in medium without Cd(II), while intracellular Cd(II) decreased to undetectable levels. These results suggest that the Cd(II)-resistant phenotype is heritable. This phenomena may be attributable to the presence of genetic inhomogeneity in the wild-type cell populations or to mutagenesis caused by Cd(II) stress. Intracellular Cd(II) levels significantly decreased in the CdR phenotype compared to the wild-type cells, indicating that resistant cells may have a defective gene that codes for Cd(II)-uptake protein or the ability to secrete Cd(II).  相似文献   

7.
Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L3-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO4·3H2O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)2·H2O}2·H3O+·ClO4 ? corresponds to Cd(S–GS)3O (dominating) and Cd(S–GS)4 four-coordination within oligomeric complexes with mean bond distances of 2.51 ± 0.02 Å for Cd–S and 2.24 ± 0.04 Å for Cd–O. For cadmium(II) solutions (C Cd(II) ~ 0.05 M) at pH 7.5 with moderate excess of GSH (C GSH/C Cd(II) = 3.0–5.0), a mix of Cd(S–GS)3O (dominating) and Cd(S–GS)4 species is consistent with the broad 113Cd NMR resonances in the range 632–658 ppm. In alkaline solutions (pH 11.0 and C GSH/C Cd(II) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS2N2(N/O)2 and CdSN3O2 coordination in fast exchange, whereas the second corresponds to Cd(S–GS)4 sites. At high ligand excess the tetrathiolate complex, Cd(S–GS)4, characterized by a sharp δ(113Cd) NMR signal at 677 ppm, predominates. The average Cd–S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49–2.53 Å, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry.  相似文献   

8.
Ten indigenous heavy metals resistant bacteria were isolated from the discharged effluent of Biological Sciences building at Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. The bacterial strains were isolated using enrichment method in tryptone soya agar (TSA) supplemented with 100 mg/L of Pb, Cd, As, and Ni. All the isolated bacteria showed multiple tolerances to the heavy metals; however, strain GBB 220, which showed a maximum tolerable concentrations (MTCs) of 2000, 1200, 4700, and 1000 mg/L for Pb, Cd, As, and Ni, respectively, was selected for further studies. The bacterium was identified by 16S rRNA sequences as Klebsiella variicola and was subjected to mutational enhancement by acridine orange and ethidium bromide. Eight mutants were recovered, strains K. variicola MutAa–Ad showed improvement in their MTCs of 2500, 2200, and 5000 mg/L for Pb, Cd, and As whereas K. variicola MutEa–Ed had same MTCs as the wild type except for cadmium which increased from 1200 to 1500 mg/L. The antibiotic susceptibility patterns showed that all the strains of K. variicola had multiple resistances to some of the antibiotics. The K. variicola mutants had their optimum pH at 5 and 8 while the wild type had optimum pH at 7 and 8. The cadmium removal efficiency of 97.9% at pH 7, 97.7% at pH 8, and 99.4% at pH 7 was observed for K. variicola Wt, K. variicola Mut Eb, and K. variicola Mut Ac, respectively. These findings suggested that the artificially mutated strains of K. variicola may be applied to remove cadmium from polluted environment.  相似文献   

9.
Abstract

A cadmium tolerant strain Cupriavidus sp. H29 could be applied on simultaneous removal of nitrate, phosphorus and cadmium. Response surface methodology (RSM) experiments showed that optimal removal ratios of nitrate, phosphate and Cd(II), which reached 98.89%, 75.23% and 85.01%, occurred at Cd(II) initial concentration of 30.00?mg/L, nitrate initial concentration of 55.20?mg/L, phosphate initial concentration of 50.00?mg/L, initial pH of 7.0 and C/N ratio of 6.0. Studies on gaseous product, precipitations and extracellular polymeric substances (EPS) indicated that the removal of Cd(II) occurred in the extracellular place. Through the coordinated complexation of EPS, strain H29 can achieve the bio-induced phosphate-cadmium removal. Moreover, studies on heated cells, resting cells, permeable cells, cells membrane and cytoplasm demonstrated that the removal of Cd(II) mainly taken place on the cells membrane. This study provided the theoretical basis for the subsequent research of synchronous removal of heavy metals and other pollutants.  相似文献   

10.
Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l−1 Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.  相似文献   

11.
Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals—lead (Pb) and cadmium (Cd)—globally, and trace metals—zinc (Zn) and copper (Cd)—particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals—cadmium and lead—and trace metals—zinc and copper—in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.  相似文献   

12.
A Gram-negative bacterium, designated as strain 12S, was isolated from a heavy metal-polluted soil. According to the biochemical characteristics, FAME analysis, and 16S rRNA gene sequence analysis, the isolated strain was identified as Variovorax sp. 12S. In the presence of 0.1 mM cadmium, 12S was able to completely utilize up to 1.5 mM of phenol as the sole carbon and energy source in an MSM–TRIS medium. Degradation of phenol was accompanied by a slow bacterial growth rate and an extension of the lag phase. The cells grown on phenol showed catechol 2,3-dioxygenase (C23O) activity. The activity of C23O from 12S cultivated in medium with Cd2+ was almost 20 % higher than in the control. Since environmental contamination with aromatic compounds is often accompanied by the presence of heavy metals, Variovorax sp. 12S and its C23O appear to be very powerful and useful tools in the biotreatment of wastewaters and soil decontamination.  相似文献   

13.
Chamomile (Matricaria chamomilla L.) is a widely used medicinal plant but may also accumulate metals including cadmium. Because recent paper (Masarovi?ová et al. 2010 Acta Physiol Plant 32:823–829) contradicts previous results of our research group and suggested Cd “hyper/accumulation” in chamomile, present study examined Cd uptake in a long-term experiment (7 weeks) using low Cd concentration (1.5 μM). Besides, typical Cd hyperaccumulator Thlaspi caerulescens and Ni hyperaccumulator Thlaspi goesingense were also cultured under identical conditions. Data obtained indicate that shoot Cd content and bioaccumulation factor (BAF) in chamomile was ca. 5–10 times lower than that in Thlaspi. In this view, chamomile is not a hyperaccumulator species. Comparison of shoot Cd content, BAF and translocation factor (TF) in selected crops is also provided.  相似文献   

14.
This study reports the influence of Mg ions on the development and architecture of biofilms by a chromium resistant and reducing bacterium Arthrobacter sp. SUK 1201 and their utilization in the removal of toxic hexavalent chromium. Among the different metal ions tested, Mg(II) greatly influenced the biofilm growth in peptone yeast extract glucose medium. Both Scanning and Confocal Laser Scanning Microscopy revealed that biofilms formed under the induction of Mg(II) had characteristic higher cell densities. The cells remain embedded in thick porous layers of extracellular polymeric substances as evident from the fluorescein isothiocyanate labeled lectin concanavalin A and 4, 6- diamino-2-phenylindole staining. COMSTAT analysis also indicated maximum thickness and roughness coefficient of the biofilm grown in presence of Mg(II). Biofilms of Arthrobacter sp. SUK 1201 developed under such Mg (II) influenced condition showed complete removal of 0.5 mM Cr(VI) in mineral salts medium. The biofilm of this isolate grown in presence of Mg(II) was also able to remove 60µM Cr(VI) from mine seepage water suggesting its possible implication in effective bioremediation of chromium polluted environments.  相似文献   

15.
耐铅镉菌株的分离鉴定及其吸附能力   总被引:1,自引:0,他引:1  
堆肥中添加生物钝化剂是当前降低粪便中重金属生物毒性最为有效的方式之一,为了进一步提高其钝化重金属的能力,文中获得了复合重金属高耐性的钝化剂菌株,并探究其生物学特性和吸附特征。采集猪粪堆肥样品并在改良的牛肉膏培养基中分离和筛选耐铅又耐镉的高耐性菌株,通过形态结合分子生物学鉴定该菌株。该菌株分别在不同pH、温度和盐浓度条件下培养获得其最适的生长条件,进而在该条件下分析其对铅镉吸附的特性。结果获得一株耐铅浓度为600 mg/L、镉浓度为120 mg/L的铅镉复合耐性菌株SC19,该菌株为西地西菌属,其最适生长环境为pH值7.0、温度37℃、盐浓度0.5%。培养36 h的稳定期SC19菌株在吸附时间30min时铅的去除率最高,对铅的最大去除率和吸附量分别为60.7%和329.13mg/g;培养8h的对数期在吸附时间30min时镉的去除率最高,对镉的最大去除率和吸附量分别为51.0%和126.19 mg/g。红外光谱分析显示,SC19菌株对铅镉离子的吸附主要是细胞表面的多种活性基团与金属离子发生络合作用。该研究揭示了SC19菌株有较好的二价态铅镉离子吸附能力,可为生物钝化重金属提供重要的微生物种质资源。  相似文献   

16.
A Gram-negative, aerobic, motile by means of single polar flagellum, short rod-shaped marine bacterium, designated strain E418T, was isolated from the spines on the body surface of starfish Acanthaster planci in the Xisha islands, China. Cells of strain E418T were found to grow optimally at pH 7–8, at 25–37 °C, and in the presence of 2–5 % (w/v) NaCl. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain E418T is a member of the genus Pseudoalteromonas. The closest relative to this strain was found to be P. ruthenica LMG 19699T, with a similarity level of 97.7 %. DNA relatedness between the novel isolate and this phylogenetically related species was 57.4 %. Strain E418T decomposed Tween 80, gelatin, and casein, but was unable to decompose starch and grow on DNase Agar. The cellular fatty acid profile consisted of significant amounts of C16:1ω7c/C16:1ω6c, C18:1ω7c/C18:1ω6c, C16:0, and C17:1ω8c. The G+C content of DNA of this strain was determined to be 46.7 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that strain E418T represents a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas xishaensis sp. nov. is proposed. The type strain of P. xishaensis is strain E418T (DSM 25588T = NBRC 108846T = CCTCC AB 2011177T).  相似文献   

17.
Sorption affinity of copper flotation waste from KGHM toward Cd(II), Cr(III), Cu(II), and Pb(II) ions was investigated in this work. Batch sorption studies, using single-element synthetic aqueous solutions at various pH (2–12), contact time (10–300 min), initial concentration (100–5000 mg dm?3; 1–100 mg dm?3 for Cd(II)) and adsorbent dose (25–200 g dm?3), were performed. Bonding strength of adsorbed metals was tested from the degree of desorption. The maximum metal removal was observed at pH 5–8, ≥120 min reaction time, and 25 g dm?3 adsorbent dose. Maximum sorption capacities of studied material were 41.6, 58.8, and 83.8 mg g?1 for Cr(III), Cu(II), and Pb(II), respectively, for 5000 mg dm?3 initial concentration, and 0.86 mg g?1 for Cd(II) for initial concentration of 50 mg dm?3. Sorption isotherms were very well fitted to Langmuir (Cd, Cr, Pb) and Freundlich (Cu) models. Sorption kinetics was nearly ideally fitted to pseudo-second-order kinetic model. Desorption studies showed that most of Cr(III) (98.5%) and Pb(II) (67.3%) ions remained bound to the surface, indicating that the chemisorption dominated as a controlling process. On the other hand, mostly desorbed were Cd(II) (98.5%) and Cu(II) (90.3%) ions, which indicated that processes like physisorption or precipitation were prevailing.  相似文献   

18.
Heavy metals have detrimental impacts on the health of organisms including human beings. Wetlands are economical, natural alternatives for the removal of heavy metals from the environment and macrophytes play a pivotal role in this direction, though they vary in their potential to do so. Heavy metal accumulation capability of two dominant species (Ceratophyllum demersum and Potamogeton natans) in a Kashmir Himalayan Ramsar site was studied. The accumulation of the different metals in P. natans was in the order of Al > Mn > Pb > Cu > Zn > Ni > Co > Cr > Cd, while in C. demersum it was Al > Mn > Zn > Co > Cu > Pb > Cr > Ni > Cd. In C. demersum the highest bioconcentration factor (BCF) was obtained for Co (3616) and Mn (3589) while in P. natans the highest BCF corresponded to Cd (1027). Overall PotamogetonCeratophyllum combination may provide a useful mix for Co, Mn and Cd removal from contaminated sites. The management implications of these results are briefly discussed.  相似文献   

19.
Pseudoalteromone A (PA) is a cytotoxic and anti-inflammatory ubiquinone discovered recently from a marine bacterium Pseudoalteromonas sp. CGH2XX. In order to meet its sample supply for further in vivo pharmacological investigation, an efficient method was developed for the preparation of PA by combination of response surface methodology (RSM) and high-speed counter-current chromatography (HSCCC) from marine bacterium P. rubra QD1-2. First, optimization of culture conditions was studied by the RSM to enhance PA production. The results indicated that the optimal cultivation condition was peptone (2.21 g/l), yeast extract (3.125 g/l), glucose (0.125 g/l), KBr (0.02 g/l), inoculum size (6.5 %), medium volume (595 ml), initial pH value (7.0), temperature (28 °C). Under the optimized fermentation condition, PA production was 1.04 mg/l with 14.8-fold increase comparing to 0.07 mg/l under original standard fermentation condition. The PA production was further investigated using a 14-l jar fermenter. Compared to the flask culture, P. rubra QD1-2 offered 45 % increase of PA production at 1.51 mg/l. Then, a rapid and efficient method for the separation and purification of PA from crude culture extract was developed using HSCCC. The two-phase solvent system used for HSCCC separation was composed of n-hexane–ethyl acetate–methanol–water (5:5:9:5, v/v/v/v). The isolation was accomplished within 100 min, and the purity of PA was over 95 %. The recovery of the process was 93 %.  相似文献   

20.
The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l?1), manganese (1.5, 10 and 25 mg l?1) and copper (1.5, 10 and 25 mg l?1) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号