首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The human adiponectin gene variations are associated with obesity, insulin resistance, and diabetes. However, these associations have not been fully examined in a non-diabetic population in Saudi Arabia. We aimed to investigate the association of 45T > G single nucleotide polymorphism (SNP) in the adiponectin gene with total adiponectin levels, insulin resistance (IR), fasting blood glucose (FBG) and other markers of obesity in non-diabetic Saudi females.

Methods

One hundred non diabetic Saudi females were enrolled in this study. They were further divided according to their body mass index (BMI) into two groups. Group I, 46 non diabetic subjects with normal body weight and group II, 54 overweight and obese females. Adiponectin 45T/G polymorphism was detected by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Serum adiponectin was measured by ELISA.

Results

Obese women exhibited a higher distribution of TG/GG genotype compared with non-obese women. SNP + 45T > G genotypes were associated with higher FBG, insulin levels and HOMA–IR with lower total adiponectin levels in obese Saudi women. Otherwise the all estimated variables revealed non-significant differences among the non-obese genotypes. The observed differences in insulin resistance markers were very significant among women with a higher body weight but not among normal body weight women, thus suggesting that SNP + 45T > G effects on insulin sensitivity may depend upon body weight and body fat status.

Conclusion

SNP + 45T > G of adiponectin gene has a significant role in the development of insulin resistance in Saudi women possibly through an interaction with increase body weight and hypoadiponectinemia.  相似文献   

2.
Objective: Obese non-diabetic patients are characterized by an extra-hepatic insulin resistance. Whether obese patients also have decreased hepatic insulin sensitivity remains controversial. Research Methods and Procedures: To estimate their hepatic insulin sensitivity, we measured the rate of exogenous insulin infusion required to maintain mildly elevated glycemia in obese patients with type 2 diabetes, obese non-diabetic patients, and lean control subjects during constant infusions of somatostatin and physiological low-glucagon replacement infusions. To account for differences in insulin concentrations among the three groups of subjects, an additional protocol was also performed in healthy lean subjects with higher insulin infusion rates and exogenous dextrose infusion. Results: The insulin infusion rate required to maintain glycemia at 8.5 mM was increased 4-fold in obese patients with type 2 diabetes and 1.5-fold in obese non-diabetic patients. The net endogenous glucose production (measured with 6,6-2H2-glucose) and total glucose output (measured with 2-2H1-glucose) were ∼30% lower in the patients than in the lean subjects. Net endogenous glucose production and total glucose output were both markedly increased in both groups of obese patients compared with lean control subjects during hyperinsulinemia. Discussion: Our data indicate that both obese non-diabetic and obese type 2 diabetic patients have a blunted suppressive action of insulin on glucose production, indicating hepatic and renal insulin resistance.  相似文献   

3.
BACKGROUND: Two studies were designed to determine whether a single dose (80 mg) of the angiotensin II receptor blocker (ARB), valsartan, alters insulin sensitivity in obese, non-hypertensive subjects with and without Type 2 diabetes. METHODS: Insulin sensitivity (S(I)), glucose effectiveness (S(G)), and acute insulin response (AIR(0-10 min)) were measured by means of a 3-hour insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT) before and after a single dose of valsartan. Study 1: obese, normotensive non-diabetic male subjects (n = 12), mean (SD) age 37.2 +/- 11.2 years, BMI 32.8 +/- 6.8 kg/m (2); Study 2: obese, normotensive Type 2 diabetic patients (n = 12), mean age 55.7 +/- 6.9 years, BMI 35.0 +/- 6.8 kg/m (2)/l. Both studies were randomised, double-blind, placebo-controlled, single-dose crossover group studies involving subjects in two study days, two weeks apart. After fasting samples were taken, a 300 mg/kg iv glucose bolus was injected at 0 min, and 0.05 U/kg iv insulin was given 20 min later. Blood samples for analysis of glucose and insulin were taken throughout the 3-hour study period. RESULTS: Study 1 (non-diabetic subjects) S(I) 2.81 vs. 2.63 x 10 (-4) min (-1) per microU/ml (p = 0.54), S(G) 0.020 vs. 0.020 min (-1) (p = 0.90), AIR(0-10) min 3305 vs. 3450 microU/min/ml (p = 0.71); Study 2 (patients with type 2 diabetes) S(I) 0.59 vs. 0.85 x 10 (-4) min (-1) per microU/ml (p = 0.15), S(G) 0.013 vs. 0.014 min (-1) (p = 0.71), AIR(0-10) min 65 vs. 119 microU/min/ml (p = 0.14), placebo vs. valsartan, respectively. CONCLUSION: In obese, non-hypertensive non-diabetic and Type 2 diabetic subjects a single dose of valsartan does not alter insulin sensitivity.  相似文献   

4.
We have examined the concentration of β-carotene in the fat of isolated abdominal subcutaneous adipocytes obtained from lean (BMI<23 kg/m2), non-obese with higher BMI (23≤BMI<28 kg/m2), obese (BMI≥28 kg/m2), and from a group of obese subjects with type 2 diabetes. The concentration of β-carotene was 50% lower in the adipocytes from the obese and obese/diabetic groups compared with the lean and non-obese groups. Interestingly, the total amount of β-carotene in the adipocyte stores of each subject was constant among all groups. Triacylglycerol constituted 92±1% (by weight) of the adipocyte lipids in the lean group and this was increased to 99±2% in the obese group with diabetes (p<0.05). The concentration of cholesteryl esters was in all cases <0.1 g per 100 g of total lipids, demonstrating that mature human adipocytes have negligible stores of cholesteryl ester. Our findings demonstrate that adipocyte concentrations of β-carotene are reduced in obese subjects. The lower concentrations in adipocytes from subjects with type 2 diabetes apparently reflect subjectś obesity. Our finding that whole-body stores of β-carotene in adipocytes are constant raises new questions regarding what function it serves, as well as the mechanisms for maintaining constant levels in the face of varied adipose tissue mass among individuals over a period of time.  相似文献   

5.
The insulin resistance found in diabetes is influenced by vascular tone and local blood flow. Endothelial-derived hyperpolarizing factor (EDHF) functions as a potent vasodilator to regulate vascular tone, and its production is regulated by soluble epoxide hydrolase (sEH). In this study, we examined the genotype distribution and allele frequency of sEH gene G860A (Arg287Gln) polymorphism in Japanese subjects (n=499) (non-diabetic subjects, n=205; type 2 diabetic patients, n=294). Also, to accurately evaluate insulin resistance, we performed the euglycemic hyperinsulinemic clamp test for each type 2 diabetic patient (n=86) from whom agreement was obtained, and then examined a possible association of sEH gene G860A polymorphism with insulin resistance status. There was no significant difference in genotype distribution and allele frequency between non-diabetic subjects and type 2 diabetic patients. Interestingly, however, there was close association of sEH gene G860A (Arg287Gln) polymorphism with insulin resistance in type 2 diabetic patients, which was not observed in non-diabetic subjects. These results suggest that sEH and EDHF play some important role in the pathogenesis of insulin resistance found in type 2 diabetes.  相似文献   

6.
Changes in insulin-stimulated glucose metabolism were studied in young and aged subjects, subjects with impaired glucose tolerance, and patients with NIDDM by means of the glucose clamp technique. The diabetic group includes obese and non-obese patients treated without insulin and non-obese patients treated with insulin. The glucose disposal rate (GDR) was decreased in aged subjects (5.8 +/- 0.4 mg/kg/min) compared with young controls (7.4 +/- 0.3 mg/kg/min). In patients with IGT, it was further decreased to 3.6 +/- 0.5 mg/kg/min, which was comparable to the rate in NIDDM without insulin treatment (3.3 +/- 0.4 mg/kg/min). There were no differences in the GDR between obese (3.0 +/- 0.3 mg/kg/min) and non-obese (3.4 +/- 0.6 mg/kg/min) diabetic patients. In insulin-treated diabetic patients, GDR ranged widely, but the mean value was partially normalized (5.2 +/- 0.9 mg/kg/min). In the diabetic group, no correlation was observed between fasting blood glucose and GDR. These results suggest that in the course of developing NIDDM, a decrease in insulin-stimulated glucose uptake precedes a rise in fasting blood glucose. Thus, as previously reported for Caucasian NIDDM patients, resistance to insulin-stimulated glucose uptake may be one of the basic defects in Japanese patients with NIDDM. The degree of glycemia, however, is not directly related to the magnitude of the defect in insulin action.  相似文献   

7.
Impaired insulin action plays a major role in the pathogenesis of type 2 diabetes, a chronic metabolic disorder which imposes a tremendous burden to morbidity and mortality worldwide. Unraveling the molecular mechanisms underlying insulin resistance would improve setting up preventive and treatment strategies of type 2 diabetes. Down-regulation of GALNT2, an UDPN-acetyl-alpha-D-galactosamine polypeptideN-acetylgalactosaminyltransferase-2 (ppGalNAc-T2), causes impaired insulin signaling and action in cultured human liver cells. In addition, GALNT2 mRNA levels are down-regulated in liver of spontaneously insulin resistant, diabetic Goto-Kakizaki rats. To investigate the role of GALNT2 in human hyperglycemia, we measured GALNT2 mRNA expression levels in peripheral whole blood cells of 84 non-obese and 46 obese non-diabetic individuals as well as of 98 obese patients with type 2 diabetes. We also measured GALNT2 mRNA expression in human U937 cells cultured under different glucose concentrations. In vivo studies indicated that GALNT2 mRNA levels were significantly reduced from non obese control to obese non diabetic and to obese diabetic individuals (p<0.001). In vitro studies showed that GALNT2 mRNA levels was reduced in U937 cells exposed to high glucose concentrations (i.e. 25 mmol/l glucose) as compared to cells exposed to low glucose concentration (i.e. 5.5 mmol/l glucose +19.5 mmol/l mannitol). In conclusion, our data indicate that GALNT2 is down-regulated in patients with type 2 diabetes and suggest that this association is, at least partly, secondary to hyperglycemia. Further studies are needed to understand whether GALNT2 down-regulation plays a pathogenic role in maintaining and/or aggravating the metabolic abnormalities of diabetic milieu.  相似文献   

8.
Adiponectin, an adipose tissue specific protein encoded by the Adiponectin gene, modulates insulin sensitivity and plays an important role in regulating energy homeostasis. Many studies have shown that single nucleotide polymorphisms (SNPs) in the Adiponectin gene are associated with low plasma Adiponectin levels, insulin resistance and an increased risk of type 2 diabetes mellitus. The aim of the present study was to evaluate the contribution of the Adiponectin gene polymorphisms in genetic background of type 2 diabetes in a Turkish population. In total, 169 unrelated and non-obese diabetic patients and 119 age- and BMI-matched non-diabetic individuals with no family history of diabetes were enrolled in this study. We detected a significant association between type 2 diabetes and two SNPs: SNP − 11391G > A, which is located in the promoter region of the Adiponectin gene, and SNP + 276G > T, which is found in intron 2 of the gene (P < 0.05). The silence SNP G15G (+ 45T > G) in exon 1 and SNP + 349A > G in intron 2 also showed a weak association with type 2 diabetes (P = 0.06 and P = 0.07, respectively), while SNPs − 3971A > G in intron 1 and Y111H, R112C and H241P in exon 3 showed no association (P > 0.05). In conclusion, these findings suggest that Adiponectin gene polymorphisms might be effective on susceptibility for type 2 diabetes development which emerged from the interactions between multiple genes, variants and environmental factors.  相似文献   

9.
There is mounting evidence that elevated circulating concentrations of glycated insulin play a role in insulin resistance in type 2 diabetes. This study evaluated the secretion of glycated insulin in response to enteral stimulation in type 2 diabetic subjects. Following a mixed meal (450 kcal; 44 % carbohydrate; 40 % fat; 16 % protein), glycated insulin rose 10-fold to peak (60 min) at 104.5 +/- 25.0 pmol/l (p < 0.001), representing 22 % total circulating insulin. The response paralleled early rises in insulin and C-peptide, which peaked at 90 min and were more protracted. Maximum glucose concentrations were observed at 50 min. These data indicate that type 2 diabetic subjects exhibit a rapid meal-induced release of glycated insulin from readily releasable pancreatic beta-cell stores, which might contribute to impaired glucose homeostasis following enteral nutrition.  相似文献   

10.
In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms of these metabolic malfunctions, we studied mitochondrial respiration, uncoupled respiration and oxidative enzyme activities (citrate synthase (CS), 3-hydroxy-acyl-CoA-dehydrogenase activity (HAD)) before and after acute exposure to insulin and/or palmitate in myotubes established from healthy lean and obese subjects and T2D patients. Basal CS activity was lower (14%) in diabetic myotubes compared with myotubes from lean controls (P=0.03). Incubation with insulin (1 microM) for 4 h increased the CS activity (26-33%) in myotubes from both lean (P=0.02) and obese controls (P<0.001), but not from diabetic subjects. Co-incubation with palmitate (0.6 mM) for 4 h abolished the stimulatory effect of insulin on CS activity in non-diabetic myotubes. No differences were detected in mitochondrial respiration and HAD activity between myotubes from non-diabetic subjects and T2D patients, and none of these measures responded to high levels of insulin and/or palmitate. These results provide evidence for an intrinsic defect in CS activity, which may play a role in the pathogenesis of T2D. Moreover, the data suggest that insulin resistance at the CS level can be induced by exposure to high free fatty acid levels.  相似文献   

11.
12.
We investigated the relationship of codon 972 polymorphism of the insulin receptor substrate-1 (IRS-1) gene with insulin resistance in the Japanese population. Among 130 patients with type-2 diabetes mellitus (DM), we identified 6 who were heterozygous for the Gly972Arg mutation. Among 144 healthy subjects, 6 were heterozygous and 1 was homozygous for the mutation. A hyperinsulinemic euglycemic clamp study was performed in 3 of 6 diabetic patients with the heterozygous Gly972Arg mutation and in 60 without it. Both groups showed almost the same levels of insulin sensitivity (glucose infusion rate, GIR = 50.2 +/- 3.0 vs. 51.3 +/- 12.1 micromol/kg/min). Similarly, there was no difference in insulin sensitivity between healthy subjects with and without the mutation using the homeostasis model assessment (HOMA index = 1.14 +/- 0.50 vs. 1.02 +/- 0.63). The frequency of the Gly972Arg allele was not increased in diabetic patients compared with control subjects even in aged (>50 years old) or obese (BMI >/=25) subjects. Among healthy subjects, we identified a 25-year-old male with the homozygous Gly972Arg allele. He was slightly obese (BMI = 25.5) but showed relatively high insulin sensitivity, almost equal to that of healthy subjects without the mutation (GIR = 67.2 vs. 71.8 +/- 22.0 micromol/kg/min). Because the GIR in healthy subjects was significantly higher compared with that in type-2 DM patients, we speculate that another genetic or environmental factor producing a more deleterious effect on insulin sensitivity may exist in diabetic patients. We conclude that this gene abnormality does not play a role in the pathogenesis of insulin resistance and type-2 DM.  相似文献   

13.
Improved glucose tolerance following a sequential meal is known as the second-meal phenomenon. We aimed to investigate its extent and underlying mechanisms in patients with type 2 diabetes. Metabolic responses after lunch in 12 diabetic patients were compared on two separate days: one with (Day BL) and another without (Day FL) breakfast. The responses of hormones were calculated by the incremental area under the curve (iAUC) values for 180 min after each meal. Indexes of early-phase insulin secretion were assessed, and β-cell function was estimated by mathematical modeling. [iAUC(glucose(180-360 min))] was significantly lower on Day BL than on Day FL (181 ± 43 vs. 472 ± 29 mmol·liter(-1)·min, P = 0.0005). The magnitude of the The second-meal phenomenon [iAUC(glucose(180-360 min)) on Day BL/Day FL] was 35 ± 9%. The peak levels of insulin and C-peptide were attained 45 min earlier after the second meal than after the first meal. iAUC(glucose(180-360 min)) correlated negatively with iAUC(insulin(180-210 min)) (r = -0.443, P = 0.0300), insulinogenic index (r = -0.769, P < 0.0001), acute C-peptide response (r = -0.596, P = 0.0021), and potentiation factor [i.e., potentiation effect on insulin secretion] ratio (180-360)/(0-20) (r = -0.559, P = 0.0045), while correlated positively with free fatty acid level before lunch (r = 0.679, P = 0.0003). The second-meal phenomenon was evident in patients with type 2 diabetes. Potentiation of the early-phase insulin response by a prior meal contributes to this phenomenon in type 2 diabetes.  相似文献   

14.
The association of the Ser326Cys polymorphism of the 8-oxoguanine glycosylase 1 (OGG1) gene with type 2 diabetes was examined using a Japanese population (n (M/W): 4585 (2085/2500); age: 62.6 ± 10.9 years). HbA1c levels and frequency of diabetic subjects were significantly higher in subjects with genotypes with Cys allele than in those without (p = 0.032 and 0.037, respectively). Multiple logistic regression analysis showed that genotypes with Cys allele were significantly associated with diabetes (OR: 1.32, p = 0.0289). In subjects whose glucose tolerance was classified by FPG and 2-h PG (n = 1.634), the association was more substantial (genotypes with Cys allele vs. without, OR: 1.70, p = 0.0059; genotypes Cys/Cys vs. Ser/Ser, OR: 2.19, p = 0.0008). In subjects with genotype Ser/Ser, the insulin secretion index, HOMA-β, increased in the subjects with glucose intolerance and decreased in the subjects with diabetes, while, in subjects with genotypes Ser/Cys + Cys/Cys, HOMA-β decreased as the glucose tolerance progressed (p for trend = 0.010).  相似文献   

15.
The association of obesity with type 2 diabetes mellitus has been recognized for years. In type 2 diabetes, there is a possibility that an important part of the impaired insulin secretion is due to the gastric inhibitory polypeptide (GIP) hormone. This study investigated changes that occur in the pancreatic GIP receptors' (GIP-Rs) expression and in GIP secretion in obese and type 2 diabetic rats and its relation to plasma glucose and insulin levels during oral glucose tolerance test (OGTT) compared to control rats. During the first 20 min of the OGTT, both the obese and the diabetic rats had a significant increase in the glucose excursion and a significant decrease in early-insulin secretion compared to the control group, with more prominent changes in the diabetic group. The obese rats had a significant increase in fasting GIP level and in the incremental change of GIP from 0 to 20 min (GIP Delta 0-20: 60.1 + or - 6.66 pmol/l) compared to that of the control (33.96 + or - 4.69 pmol/l) and the diabetic (29.34 + or - 2.62 pmol/l) group, which were not significantly different from each other. However, there was a significant decrease in GIP-Rs expression in both the obese (88.07 + or - 10.36 microg/ml) and diabetic (87.51 + or - 4.72 microg/ml) groups compared to the control group (120.35 + or - 8.06 microg/ml). During the second hour of the OGTT, plasma GIP was decreasing in all groups, however, the obese group had a significant hyperinsulinemia compared to the other two groups. Moreover, the diabetic group had a significantly lower plasma insulin level until the 90 min interval and thereafter it showed a non-significant difference compared to the control group. In conclusion, both obese and diabetic rats had an impaired early-phase insulinotropic effect of GIP due to impaired gene expression of GIP-Rs which could be a potential target to prevent transition of obesity to diabetes and to improve insulin secretion in the latter.  相似文献   

16.
Non-obese type 2 diabetic subjects in good metabolic control (n=6, HbA1c 7.0 +/- 0.3%, mean diabetes duration: 5.7 +/- 1 years) and matched non-diabetic subjects (control; n = 6) were studied during hyperinsulinemic (approximately 3 nmol/l)-hypoglycemic (approximately 3.1 mmol/l) clamp tests (0-120 min) and the subsequent recovery period (120-240 min). Plasma glucagon rose gradually but not significantly, whereas norepinephrine and epinephrine similarly increased approximately 2 and approximately 25-fold in both groups. Islet amyloid polypeptide (IAPP) decreased to approximately 41% and approximately 24% of basal values during hypoglycemia and rapidly rose approximately 4.7-fold during the recovery period, while plasma C-peptide remained suppressed in both groups. Within 140 min, plasma free fatty acids similarly decreased to approximately 70 micromol/l (p < 0.05), but then rose to values being approximately 50% higher in diabetic than in control subjects (240 min: 907 +/- 93 vs. 602 +/- 90 micromol/l; p < 0.05). Glucose infusion rates were comparable during hypoglycemia, but approximately 40% lower during recovery in diabetic patients (1.88 +/- 0.27 vs. 3.44 +/- 0.27 mg x kg(-1) x min(-1), p < 0.001). These results demonstrate that (i) hypoglycemia induced by high-dose insulin largely abolishes the counterregulatory response of glucagon, but not of catecholamines in nondiabetic and well-controlled type 2 diabetic subjects, (ii) the rapid posthypoglycemic increase of plasma IAPP occurs independently of plasma insulin, and (iii) the superior rise in plasma free fatty acids may account at least in part for the posthypoglycemic insulin resistance of type 2 diabetic patients.  相似文献   

17.
Among the products of enteroendocrine cells are the incretins glucagon-like peptide-1 (GLP-1, secreted by L cells) and glucose-dependent insulinotropic peptide (GIP, secreted by K cells). These are key modulators of insulin secretion, glucose homeostasis, and gastric emptying. Because of the rapid early rise of GLP-1 in plasma after oral glucose, we wished to definitively establish the absence or presence of L cells, as well as the relative distribution of the incretin cell types in human duodenum. We confirmed the presence of proglucagon and pro-GIP genes, their products, and glucosensory molecules by tissue immunohistochemistry and RT-PCR of laser-captured, single duodenal cells. We also assayed plasma glucose, incretin, and insulin levels in subjects with normal glucose tolerance and type 2 diabetes for 120 min after they ingested 75 g of glucose. Subjects with normal glucose tolerance (n=14) had as many L cells (15+/-1), expressed per 1,000 gut epithelial cells, as K cells (13+/-1), with some containing both hormones (L/K cells, 5+/-1). In type 2 diabetes, the number of L and L/K cells was increased (26+/-2; P<0.001 and 9+/-1; P < 0.001, respectively). Both L and K cells contained glucokinase and glucose transporter-1, -2, and -3. Newly diagnosed type 2 diabetic subjects had increased plasma GLP-1 levels between 20 and 80 min, concurrently with rising plasma insulin levels. Significant coexpression of the main incretin peptides occurs in human duodenum. L and K cells are present in equal numbers. New onset type 2 diabetes is associated with a shift to the L phenotype.  相似文献   

18.
We have shown recently that oxidative stress by chronic hyperglycemia damages the pancreatic beta-cells of GK rats, a model of non-obese type 2 diabetes, which may worsen diabetic condition and suggested the administration of antioxidants as a supportive therapy. To determine if natural antioxidant alpha-tocopherol (vitamin E) has beneficial effects on the glycemic control of type 2 diabetes, GK rats were fed a diet containing 0, 20 or 500 mg/kg diet alpha-tocopherol. Intraperitoneal glucose tolerance test revealed a significant increment of insulin secretion at 30 min and a significant decrement of blood glucose levels at 30 and 120 min after glucose loading in the GK rats fed with high alpha-tocopherol diet. The levels of glycated hemoglobin A1c, an indicator of glycemic control, were also reduced. Vitamin E supplementation clearly ameliorated diabetic control of GK rats, suggesting the importance of not only dietary supplementation of natural antioxidants but also other antioxidative intervention as a supportive therapy of type 2 diabetic patients.  相似文献   

19.
To directly evaluate prehepatic secretion of pancreatic hormones during a 3-h oral glucose tolerance test (OGTT), we measured insulin and C-peptide in six healthy control, six obese, and six type 2 diabetic subjects in the femoral artery and hepatic vein by means of the hepatic catheterization technique. Hypersecretion in obesity was confirmed (309 +/- 66 nmol in obese vs. 117 +/- 22 in control and 79 +/- 13 in diabetic subjects, P 0.3, r(2) = 0.93), whereas estimation of hepatic insulin extraction and insulin clearance needs further investigation for improvement.  相似文献   

20.
The aim of the present study was to investigate the effects of short-term physical exercise that did not change body mass on insulin sensitivity, insulin secretion, and glucose and lipid metabolism in 39 non-obese Japanese type 2 diabetic patients. Insulin sensitivity and insulin secretion were estimated with homeostasis model assessment insulin resistance (HOMA-IR) and HOMA-B-cell function proposed by Matthews et al., respectively. All patients were hospitalized and were engaged in low-intensity exercise that consisted of walking and dumbbell exercise for successive 7 days. There were no changes in hospital diet and the dose of any medications used throughout the study. Fasting glucose, insulin, and lipids were measured before and after exercise.After exercise, serum triglyceride levels significantly decreased, but no significant changes were observed in total and HDL cholesterol concentrations. Fasting glucose, insulin, and HOMA-IR levels significantly decreased after exercise, but HOMA-B-cell function did not change during the study. There was no significant difference between BMI levels before and after exercise.From these results, it can be concluded that short-term (7 days) low-intensity physical exercise combined with hospital diet reduces serum triglycerides, insulin resistance, and fasting glucose levels without affecting BMI in non-obese Japanese type 2 diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号