首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Aims

Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation.

Methods and Results

EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively.

Conclusion

Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.  相似文献   

2.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2+ released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30?min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2+ and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

3.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

4.
Aging is associated with blunted endothelium-dependent relaxations and vascular oxidative stress. Our previous study has indicated that daily intake of red wine polyphenols (RWPs) by young rats retards aging-related endothelial dysfunction in middle-aged rats. The aim of the present study is to determine whether intake of RWPs also improves an established endothelial dysfunction in middle-aged rats and, if so, to determine the underlying mechanism. Middle-aged rats (51 weeks) received either solvent (3% ethanol), RWPs extract (100mg/kg/day) or the antioxidant and NADPH oxidase inhibitor apocynin (100mg/kg/day) in the drinking water for 4 weeks. Vascular reactivity of mesenteric artery rings from control young (12 weeks) and middle-aged rats was assessed in organ chambers. The expression level of endothelial NO synthase (eNOS), arginase I, angiotensin II receptors (AT1R and AT2R), NADPH oxidase subunits and nitrotyrosines was assessed by immunohistochemistry, and the vascular formation of reactive oxygen species (ROS) by dihydroethidine. Aging is associated with blunted endothelium-dependent relaxations, an excessive vascular formation of ROS and peroxynitrites, and an up-regulation of eNOS, arginase I, NADPH oxidase subunits (nox-1, p22phox), and AT1R and AT2R expression. RWPs and apocynin treatments improved endothelial dysfunction, normalized oxidative stress and the expression of the different proteins in the mesenteric artery of middle-aged rats. The present findings indicate that aging is associated with blunted endothelium-dependent relaxations involving an increased oxidative stress, and that these responses are improved by the intake of RWPs or apocynin for 4weeks most likely by normalizing the expression of eNOS, arginase I, NADPH oxidase and angiotensin receptors.  相似文献   

5.
Endothelial dysfunction develops as a result of oxidative stress and is responsible for diabetic vascular complications. We investigated the effects of selenium on endothelial dysfunction and oxidative stress in type 2 diabetic rats. Male Wistar rats were divided into five groups: controls, untreated diabetics, and diabetics treated with 180, 300, 500 mcg/kg selenium each day. Diabetes was induced by a single intraperitoneal injection of low dose streptozotocin to rats fed a high fat diet. Endothelium-dependent and -independent relaxations were measured in the thoracic aorta. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS) mRNA expressions were analyzed using real-time polymerase chain reaction (RT-PCR). Fasting blood glucose, lipid profile, lipid oxidation, insulin and nitric oxide were measured in blood samples. Malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase levels were measured in liver samples. RT-PCR showed that selenium reversed increased NADPH oxidase expression and decreased eNOS expression to control levels. Selenium also improved the impairment of endothelium-dependent vasorelaxation in the diabetic aorta. Selenium treatment significantly decreased blood glucose, cholesterol and triglyceride levels, and enhanced the antioxidant status in diabetic rats. Our findings suggest that selenium restores a normal metabolic profile and ameliorates vascular responses and endothelial dysfunction in diabetes by regulating antioxidant enzyme and nitric oxide release.  相似文献   

6.
Fo Shou San (FSS) is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong) and Angelicae Sinensis Radix (ASR; Danggui) in a ratio of 2∶3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh)-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS) scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs), and it also stimulated the production of nitric oxide (NO) as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS) were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca2+ levels in HUVECs, and the Ca2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca2+ and a reduction of ROS.  相似文献   

7.
《Free radical research》2013,47(2):82-88
Abstract

Endothelial dysfunction characterized by decreased nitric oxide (NO) bioavailability is the first stage of coronary artery disease. It is known that one of the factors associated with an increased risk of coronary artery disease is a high plasma level of uric acid. However, causative associations between hyperuricaemia and cardiovascular risk have not been definitely proved. In this work, we tested the effect of uric acid on endothelial NO bioavailability. Electrochemical measurement of NO production in acetylcholine-stimulated human umbilical endothelial cells (HUVECs) revealed that uric acid markedly decreases NO release. This finding was confirmed by organ bath experiments on mouse aortic segments. Uric acid dose-dependently reduced endothelium-dependent vasorelaxation. To reveal the mechanism of decreasing NO bioavailability we tested the effect of uric acid on reactive oxygen species production by HUVECs, on arginase activity, and on acetylcholine-induced endothelial NO synthase phosphorylation. It was found that uric acid increases arginase activity and reduces endothelial NO synthase phosphorylation. Interestingly, uric acid significantly increased intracellular superoxide formation. In conclusion, uric acid decreases NO bioavailability by means of multiple mechanisms. This finding supports the idea of a causal association between hyperuricaemia and cardiovascular risk.  相似文献   

8.
The objective of this study was to determine the effects and mechanisms of serum amyloid A (SAA) on coronary endothelial function. Porcine coronary arteries and human coronary arterial endothelial cells (HCAECs) were treated with SAA (0, 1, 10, or 25 microg/ml). Vasomotor reactivity was studied using a myograph tension system. SAA significantly reduced endothelium-dependent vasorelaxation of porcine coronary arteries in response to bradykinin in a concentration-dependent manner. SAA significantly decreased endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein levels as well as NO bioavailability, whereas it increased ROS in both artery rings and HCAECs. In addition, the activities of internal antioxidant enzymes catalase and SOD were decreased in SAA-treated HCAECs. Bio-plex immunoassay analysis showed the activation of JNK, ERK2, and IkappaB-alpha after SAA treatment. Consequently, the antioxidants seleno-l-methionine and Mn(III) tetrakis-(4-benzoic acid)porphyrin and specific inhibitors for JNK and ERK1/2 effectively blocked the SAA-induced eNOS mRNA decrease and SAA-induced decrease in endothelium-dependent vasorelaxation in porcine coronary arteries. Thus, SAA at clinically relevant concentrations causes endothelial dysfunction in both porcine coronary arteries and HCAECs through molecular mechanisms involving eNOS downregulation, oxidative stress, and activation of JNK and ERK1/2 as well as NF-kappaB. These findings suggest that SAA may contribute to the progress of coronary artery disease.  相似文献   

9.
Endothelial dysfunction secondary to persistent hyperglycemia plays a key role in the development of type 2 diabetic vascular disease. The aim of the present study was to examine the protective effect of resveratrol against hyperglycemia-induced endothelial dysfunction. In cultured human umbilical vein endothelial cells (HUVECs), resveratrol (10-100 μM) concentration dependently enhanced phosphorylation of endothelial nitric oxide synthesis (eNOS) at Ser1177 and nitric oxide (NO) production. In addition, resveratrol can increase the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172 and suppress high glucose-induced generation of superoxide anion. In mouse aortic rings, resveratrol (1-100 μM) elicited endothelium-dependent vasodilatations and alleviated high glucose-mediated endothelial dysfunction. All these beneficial effects of resveratrol on the endothelium were abolished by pharmacological antagonism of AMPK by compound C. These results provide new insight into the protective properties of resveratrol against endothelial dysfunction caused by high glucose, which is attributed to the AMPK mediated reduction of superoxide level.  相似文献   

10.
The present study examined potential interactions between endothelial NO synthase (eNOS), heat shock protein (HSP)90, and Akt in vascular endothelial cells stimulated with globular adiponectin to produce nitric oxide (NO). Globular adiponectin-induced eNOS phosphorylation was accompanied by eNOS-HSP90-Akt complex formation, resulting in a dose-dependent increase in NO release. Globular adiponectin stimulated binding of HSP90 to eNOS, and inhibition of HSP90 significantly suppressed globular adiponectin-stimulated NO release. Globular adiponectin also caused Akt phosphorylation, and inhibition of PI3 kinase significantly suppressed globular adiponectin-stimulated NO release. This study also examined whether globular adiponectin really induces endothelial-dependent vasodilation using rings from rat thoracic aorta. It was observed that globular adiponectin caused dose-dependent vasorelaxation in the aorta. These results indicate that stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced eNOS phosphorylation and NO production, and to endothelium-dependent vasorelaxation.  相似文献   

11.
Activation of the β2-adrenoceptor (β2-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β2-AR-mediated eNOS activation, with special focus on Gi/o proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective β2-AR agonist procaterol was reduced by inhibitors of Gi/o proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-β-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser1177, which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr14, which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-β-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial β2-AR is coupled to a Gi/o-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser1177 leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr14, through a Gi/o-Src kinase pathway. Since pulmonary β2-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to eNOS activation and sensitivities during hypoxia-induced pulmonary arterial hypertension, mechanisms underlying eNOS activation might be key determinants of pulmonary endothelial dysfunction.  相似文献   

12.
13.
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.  相似文献   

14.
In the pulmonary artery isolated from 1-week hypoxia-induced pulmonary hypertensive rats, endothelial NO production stimulated by carbachol was decreased significantly in in situ visualization using diaminofluorescein-2 diacetate and also in cGMP content. This change was followed by the decrease in carbachol-induced endothelium-dependent relaxation. Protein expression of endothelial NO synthase (eNOS) and its regulatory proteins, caveolin-1 and heat shock protein 90, did not change in the hypoxic pulmonary artery, indicating that chronic hypoxia impairs eNOS activity at posttranslational level. In the hypoxic pulmonary artery, the increase in intracellular Ca(2+) level stimulated by carbachol but not by ionomycin was reduced. We next focused on changes in Ca(2+) sensitivity of the eNOS activation system. A morphological study revealed atrophy of endothelial cells and a peripheral condensation of eNOS in hypoxic endothelial cells preserving co-localization between eNOS and Golgi or plasma membranes. However, eNOS was tightly coupled with caveolin-1, and was dissociated from heat shock protein 90 or calmodulin in the hypoxic pulmonary artery in either the presence or absence of carbachol. Furthermore, eNOS Ser(1177) phosphorylation in both conditions significantly decreased without affecting Akt phosphorylation in the hypoxic artery. In conclusion, chronic hypoxia impairs endothelial Ca(2+) metabolism and normal coupling between eNOS and caveolin-1 resulted in eNOS inactivity.  相似文献   

15.
GSE (grape seed extract) has been shown to exhibit protective effects against cardiovascular events and atherosclerosis, although the underlying molecular mechanisms of action are unknown. Herein, we assessed the ability of GSE to enhance eNOS (endothelial nitric oxide synthase) expression and NO (nitric oxide) production in H2O2 (hydrogen peroxide)‐treated HUVECs (human umbilical vein endothelial cells). GSE enhanced eNOS expression and NO release in H2O2‐treated cells in a dose‐dependent manner. GSE inhibited intracellular ROS (reactive oxygen species) and reduced intracellular calcium in a dose‐dependent manner in H2O2‐treated cells, as shown by confocal microscopy. ROS was inhibited in cells pretreated with 5.0 μM GSE, 2.0 μM TG (thapsigargin) and 20.0 μM 2‐APB (2‐aminoethoxydiphenyl borate) instead of 0.25 μM extracellular calcium. In addition, GSE enhanced eNOS expression and reduced ROS production via increasing p‐AKT (AKT phosphorylation) with high extracellular calcium (13 mM). In conclusion, GSE protected against endothelial injury by up‐regulation of eNOS and NO expression via inhibiting InsP3Rs (inositol 1,4,5‐trisphosphate receptors)‐mediated intracellular excessive calcium release and by activating p‐AKT in endothelial cells.  相似文献   

16.
The effects of desflurane on endothelium-dependent vasodilation remain uncertain, whereas sevoflurane is known to inhibit it. Endothelium-dependent vasodilation is mainly mediated by endothelial nitric oxide synthase. The effects of desflurane on endothelium-dependent vasodilation were compared with those of sevoflurane, and inhibition mechanisms, including phosphorylation of endothelial nitric oxide synthase and the calcium pathway, were evaluated for the two anesthetics. We hypothesized that desflurane would inhibit endothelium-dependent vasodilation in a concentration-dependent manner more than sevoflurane, with inhibition of a calcium pathway.Isolated rat aortic rings were randomly assigned to treatment with desflurane or sevoflurane for measurements of the vasodilation ratio. To determine NO production with desflurane and sevoflurane, an in vitro assay was performed with cultured bovine aortic endothelial cells. These cells were also used for measurement of intracellular calcium or Western blotting.For endothelium-dependent vasodilation, the ratio of vasodilation was more significantly inhibited by 11.4% desflurane than by 4.8% sevoflurane. Inhibition did not between 5.7% desflurane and 2.4% sevoflurane. No inhibitory effect of desflurane or sevoflurane was observed in endothelium-denuded aorta. Desflurane inhibited nitric oxide production caused by stimulation of bradykinin significantly more than sevoflurane. Desflurane had a greater suppressive effect on the bradykinin-induced increase in intracellular calcium concentration than did sevoflurane. Sevoflurane, but not desflurane, inhibited phosphorylation of the serine 1177 residue by bradykinin stimulation.Desflurane inhibited endothelium-dependent vasodilation more than sevoflurane through inhibition of a calcium pathway. Sevoflurane inhibited endothelium-dependent vasodilation by inhibition of phosphorylation of the serine 1177 residue of endothelial nitric oxide synthase.  相似文献   

17.
Epidemiological studies suggest that tea catechins may reduce the risk of cardiovascular disease, but the mechanisms of benefit have not been determined. The objective of the present study was to investigate the effects of epigallocatechin-3-gallate (EGCG), the major constituent of green tea, on vasorelaxation and on eNOS expression and activity in endothelial cells. EGCG (1-50 microm) induced dose-dependent vasodilation in rat aortic rings. Vasodilation was abolished by pretreatment with Ng-nitro L-arginine methyl ester. In bovine aortic endothelial cells, EGCG increased endothelial nitric oxide (eNOS) activity dose-dependently after 15 min. Treatment with EGCG induced a sustained activation of Akt, ERK1/2, and eNOS Ser1179 phosphorylation. Inhibition of extracellular signal-regulated kinase (ERK)1/2 had no influence on eNOS activity or Ser1179 phosphorylation. Simultaneous treatment of cells with selective inhibitors for cAMP-dependent protein kinase (PKA) and Akt completely prevented the increase in eNOS activity by EGCG after 15 min, indicating that both kinases act in concert. Specific phosphatidylinositol-3-OH-kinase inhibitors yielded identical results. Akt inhibition prevented eNOS Ser1179 phosphorylation, whereas inhibition of PKA did not influence Akt and eNOS Ser1179 phosphorylation. Pretreatment of endothelial cells with EGCG for 4 h markedly enhanced the increase in eNOS activity stimulated by Ca-ionomycin, suggesting that Akt accounts for prolonged eNOS activation. Treatment of cells for 72 h with EGCG did not change eNOS protein levels. Our results indicate that EGCG-induced endothelium-dependent vasodilation is primarily based on rapid activation of eNOS by a phosphatidylinositol 3-kinase-, PKA-, and Akt-dependent increase in eNOS activity, independently of an altered eNOS protein content.  相似文献   

18.
Growth-related oncogene-alpha (GRO-alpha) is a member of the CXC chemokine family, which is involved in the inflammatory process including atherosclerosis. We hypothesized that GRO-alpha may affect endothelial functions in both porcine coronary arteries and human coronary artery endothelial cells (HCAECs). Vasomotor function was analyzed in response to thromboxane A2 analog U-46619 for contraction, bradykinin for endothelium-dependent vasorelaxation, and sodium nitroprusside (SNP) for endothelium-independent vasorelaxation. In response to 10(-6) M bradykinin, GRO-alpha (50 and 100 ng/ml) significantly reduced endothelium-dependent vasorelaxation by 34.73 and 48.8%, respectively, compared with controls (P < 0.05). There were no changes in response to U-46619 or SNP between treated and control groups. With the lucigenin-enhanced chemiluminescence assay, superoxide anion production in GRO-alpha-treated vessels (50 and 100 ng/ml) was significantly increased by 50 and 86%, respectively, compared with controls (P < 0.05). With real-time PCR analysis, endothelial nitric oxide synthase (eNOS) mRNA levels in porcine coronary arteries and HCAECs after GRO-alpha treatment were significantly decreased compared with controls (P < 0.05). The eNOS protein levels by both immunohistochemistry and Western blot analyses were also decreased in GRO-alpha-treated vessels. Antioxidant seleno-l-methionine and anti-GRO-alpha antibody effectively blocked these effects of GRO-alpha on both porcine coronary arteries and HCAECs. In addition, GRO-alpha immunoreactivity was substantially increased in the atherosclerotic regions compared with nonatherosclerotic regions in human coronary arteries. Thus GRO-alpha impairs endothelium-dependent vasorelaxation in porcine coronary arteries through a mechanism of overproduction of superoxide anion and downregulation of eNOS. GRO-alpha may contribute to human coronary artery disease.  相似文献   

19.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2? released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30 min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2? and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

20.
We have demonstrated that VEGF-induced dilation of bovine pulmonary arteries is associated with activation of cytochrome P-450 family 4 (CYP4) enzymes and eNOS. We hypothesized that VEGF and the CYP4 product 20-HETE would trigger common downstream pathways of intracellular signaling to activate eNOS. We treated bovine pulmonary artery endothelial cells (BPAECs) with 20-HETE (1 microM) or VEGF (8.3 nM) and examined three molecular events known to activate eNOS: 1) phosphorylation at serine 1179, 2) phosphorylation of protein kinase B (Akt), which subsequently phosphorylates eNOS, and 3) association of eNOS with 90-kDa heat shock protein (Hsp90). Both 20-HETE and VEGF increase the phosphorylation of eNOS at serine 1179 and Akt at serine 473. The CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) blocks VEGF-induced phosphorylation of eNOS. VEGF had no effect on the binding of Hsp90 with eNOS, whereas 20-HETE decreased the association of the protein partners. Inhibition of Akt-phosphatidylinositol 3-kinase with wortmannin blocks both 20-HETE and VEGF-induced relaxation of pulmonary arteries, supporting the functional contribution of Akt phosphorylation to the vasoactive actions of both agents. Treatment with radicicol had no effect on 20-HETE-induced relaxation of pulmonary arteries, consistent with an absence of effect on association of Hsp90 to eNOS, whereas radicicol partially blocked VEGF-evoked relaxations, possibly secondary to effects on endpoints other than Hsp90 association with eNOS. In conclusion, VEGF and 20-HETE share eNOS activation pathways, including phosphorylation of serine 1179 and phosphorylation of Akt. Unlike aortic endothelial cells, eNOS activation in BPAECs by either VEGF or 20-HETE does not appear to require increased association of Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号