首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.  相似文献   

2.
Local catabolism of the essential amino acid tryptophan is considered an important mechanism in regulating immunological and neurological responses. The kynurenine pathway is the main route for the non-protein metabolism of tryptophan. The intermediates of the kynurenine pathway are present at micromolar concentrations in blood and are regulated by inflammatory stimuli. Here we show that GPR35, a previously orphan G protein-coupled receptor, functions as a receptor for the kynurenine pathway intermediate kynurenic acid. Kynurenic acid elicits calcium mobilization and inositol phosphate production in a GPR35-dependent manner in the presence of G(qi/o) chimeric G proteins. Kynurenic acid stimulates [35S]guanosine 5'-O-(3-thiotriphosphate) binding in GPR35-expressing cells, an effect abolished by pertussis toxin treatment. Kynurenic acid also induces the internalization of GPR35. Expression analysis indicates that GPR35 is predominantly detected in immune cells and the gastrointestinal tract. Furthermore, we show that kynurenic acid inhibits lipopolysaccharide-induced tumor necrosis factor-alpha secretion in peripheral blood mononuclear cells. Our results suggest unexpected signaling functions for kynurenic acid through GPR35 activation.  相似文献   

3.
Kynurenic acid is an antagonist of glutamate and alpha-7 nicotinic acetylcholine receptors and an agonist of the G: -protein-coupled receptor GPR35, which is predominantly expressed in immune and gastrointestinal tissues. In this study, we report that kynurenic acid is present in the lumen of rat small intestine in micromolar concentration sufficient to affect the GPR35 receptor. Moreover, we show that kynurenic acid can be produced by Escherichia coli. We suggest that kynurenic acid may modulate gastrointestinal function and integrity.  相似文献   

4.
GPR35, previously an orphan G-protein coupled receptor, is a receptor for kynurenic acid. Here we examine the distribution of GPR35 in the rat dorsal root ganglion (DRG) and the effects of its selective activation. GPR35 was expressed predominantly by small- to medium-diameter neurons of the DRG. Many of these same neurons also expressed the transient receptor potential vanilloid 1 channel, a nociceptive neuronal marker. The GPR35 agonists kynurenic acid and zaprinast inhibited forskolin-stimulated cAMP production by cultured rat DRG neurons. Inhibition required Gi/o proteins as the effect was completely abolished by pretreatment with pertussis toxin. This is the first study to report the expression and function of GPR35 in rat nociceptive DRG neurons. We propose that GPR35 modulates nociception and that continued study of this receptor will provide additional insight into the role of kynurenic acid in pain perception.  相似文献   

5.
6.
GPR20 was isolated as an orphan G protein-coupled receptor from genomic DNA by PCR amplification. Although GPR20 was closely related to nucleotide or lipid receptors, the functional role of this receptor, as well as its endogenous ligand, remains unclear. Here we demonstrate that GPR20 is constitutively active in the absence of ligand, leading to continuous activation of its coupled G proteins. When GPR20 was exogenously expressed in HEK293 cells, both the basal level and the prostaglandin E(2)-induced production of cAMP were significantly decreased. A remarkable increase in [(35)S]guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) binding to membrane preparations was also observed in GPR20-expressing cells. These effects of GPR20 overexpression were diminished in cells treated with pertussis toxin, suggesting that the expression of GPR20 results in the activation of G(i/o) proteins. Involvement of GPR20 in the activation of G(i/o) proteins was also supported by evidence that the disruption of a conserved DRY motif in GPR20 attenuated both [(35)S]GTPgammaS incorporation and inhibition of the prostaglandin E(2)-induced cAMP production. Knockdown of GPR20 in PC12h cells resulted in an elevation of the basal cAMP level, suggesting that the endogenous GPR20 achieves a constitutively or spontaneously active conformation. Furthermore, enhancement of [(3)H]thymidine incorporation was also observed in the GPR20-silencing cells, implying that the GPR20 expression seems to attenuate PC12h cell growth. Taken together, these data indicate that GPR20 constitutively activates G(i) proteins without ligand stimulation. The receptor may be involved in cellular processes, including control of intracellular cAMP levels and mitogenic signaling.  相似文献   

7.
The lysophospholipids, lysophosphatidic acid, sphingosine-1-phosphate, and sphingosylphosphorylcholine (SPC), are bioactive lipid molecules that regulate diverse biological processes. Although the specific G protein-coupled receptors for lysophosphatidic acid and sphingosine-1-phosphate have been well-characterized, much less is known of the SPC receptors. It has been reported that ovarian cancer G protein-coupled receptor 1 (OGR1) is a high affinity receptor for SPC, and its closely related homologue GPR4 is a high affinity receptor for SPC with low affinity for lysophosphatidylcholine (LPC). However, in a functional assay to examine the specificity of ligand binding, we found that neither SPC nor LPC, or other related lysophospholipids, induced internalization of GPR4 from the plasma membrane. In agreement, these lysolipids also did not induce translocation of beta-arrestin2-GFP from the cytosol to the plasma membrane in GPR4 expressing cells. However, when these cells were cotransfected with G protein-coupled receptor kinase 2, in the absence of added ligands, beta-arrestin2-GFP accumulated in cytoplasmic vesicles, reminiscent of vesicular labeling usually observed after agonist stimulation of GPCRs. In addition, neither SPC nor LPC stimulated the binding of GTPgammaS to membranes prepared from GPR4 expressing cells and did not activate ERK1/2. Surprisingly, enforced expression of GPR4 inhibited activation of ERK1/2 induced by several stimuli, including SPC, sphingosine-1-phosphate, and even EGF. Collectively, our results suggest that SPC and LPC are not the ligands for GPR4 and that this receptor may constitutively inhibit ERK1/2 activation.  相似文献   

8.
A lysophospholipid series, such as lysophosphatidic acid, lysophosphatidylserine, and lysophosphatidylcholine (LPC), is a bioactive lipid mediator with diverse physiological and pathological functions. LPC has been reported to induce insulin secretion from pancreatic beta-cells, however, the precise mechanism has remained elusive to date. Here we show that an orphan G-protein-coupled receptor GPR119 plays a pivotal role in this event. LPC potently enhances insulin secretion in response to high concentrations of glucose in the perfused rat pancreas via stimulation of adenylate cyclase, and dose-dependently induces intracellular cAMP accumulation and insulin secretion in a mouse pancreatic beta-cell line, NIT-1 cells. The Gs-protein-coupled receptor for LPC was identified as GPR119, which is predominantly expressed in the pancreas. GPR119-specific siRNA significantly blocked LPC-induced insulin secretion from NIT-1 cells. Our findings suggest that GPR119, which is a novel endogenous receptor for LPC, is involved in insulin secretion from beta-cells, and is a potential target for anti-diabetic drug development.  相似文献   

9.
Docosahexaenoic acid (DHA) is an endogenous ligand of G protein-coupled receptor 120 (GPR120). However, the mechanisms underlying DHA action are poorly understood. In this study, DHA stimulated glucose uptake in the skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner. GPR120-mediated increase in intracellular Ca2+ was critical for DHA-mediated AMPK phosphorylation and glucose uptake. In addition, DHA stimulated GLUT4 translocation AMPK-dependently. Inhibition of AMPK and Ca2+/calmodulin-dependent protein kinase kinase blocked DHA-induced glucose uptake. DHA and GW9508, a GPR120 agonist, increased GPR120 expression. DHA-mediated glucose uptake was not observed in GPR120 knockdown conditions. DHA increased AMPK phosphorylation, glucose uptake, and intracellular Ca2+ concentration in primary cultured myoblasts. Taken together, these results indicated that the beneficial metabolic role of DHA was attributed to its ability to regulate glucose via the GPR120-mediated AMPK pathway in the skeletal muscles.  相似文献   

10.
GPR55 is a G protein-coupled receptor. Recently, we obtained evidence that lysophosphatidylinositol (LPI) is a possible endogenous ligand for GPR55. However, no information is currently available concerning the biological activities of the individual molecular species of LPI. Furthermore, little is known concerning the levels as well as the molecular species of LPI in mammalian tissues. In this study, we first examined whether LPI is present in rat brain. We found that rat brain contains 37.5 nmol/g tissue of LPI; the most predominant fatty acyl moiety is stearic acid (50.5%) followed by arachidonic acid (22.1%). We next compared the biological activities of various molecular species of LPI and related molecules using HEK293 cells expressing GPR55. We found that the level of biological activity of the 2-arachidonoyl species is markedly higher than those of others. These results strongly suggest that the 2-arachidonoyl species of LPI is the true natural ligand for GPR55.  相似文献   

11.
The sn-1-stearoyl-2-arachidonoyl phospholipids of animal cells appear to be formed by special mechanisms. To determine whether monoacylglycerol (MG) incorporation pathways are involved we incubated quiescent Swiss 3T3 cells with [3H]glycerol-labeled sn-2-arachidonoyl MG, then analyzed the radioactive cell lipids that accumulated. We also examined cell homogenates to identify enzyme activities that might promote the incorporation of sn-2-arachidonoyl MG into other cell lipids. The cell incubation experiments demonstrated rapid labeling of several lipids, including diacylglycerol, lysophosphatidic acid, phosphatidic acid, and phosphatidylinositol. They also demonstrated selective labeling of sn-1-stearoyl-2-arachidonoyl species of phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. The cell homogenate experiments identified an sn-2-acyl MG acyltransferase activity, an MG kinase activity that phosphorylates sn-2-arachidonoyl MG in preference to sn-2-oleoyl MG, and a stearoyl-specific acyl transferase activity that converts sn-2-arachidonoyl lysophosphatidic acid into sn-1-stearoyl-2-arachidonoyl phosphatidic acid. The results also showed that this stearoyl transferase could act with other enzymes to convert sn-2-arachidonoyl lysophosphatidic acid into sn-1-stearoyl-2-arachidonoyl phosphatidylinositol. The combined results indicate that Swiss 3T3 cells incorporate sn-2-arachidonoyl MG into phospholipids by at least two different pathways, including one that specifically forms sn-1-stearoyl-2-arachidonoyl phosphatidylinositol.  相似文献   

12.
Neuropeptide B (NPB) has been recently identified as an endogenous ligand for GPR7 (NPBW1) and GPR8 (NPBW2) and has been shown to possess a relatively high selectivity for GPR7. In order to identify useful experimental tools to address physiological roles of GPR7, we synthesized a series of NPB analogs based on modification of an unbrominated form of 23 amino acids with amidated C-terminal, Br(-)NPB-23-NH(2). We confirmed that truncation of the N-terminal Trp residue resulted in almost complete loss of the binding affinity of NPB for GPR7 and GPR8, supporting the special importance of this residue for binding. Br(-)NPB-23-NH2 analogs in which each amino acid in positions 4, 5, 7, 8, 9, 10, 12 and 21 was replaced with alanine or glycine exhibited potent binding affinity comparable to the parent peptide. In contrast, replacement of Tyr(11) with alanine reduced the binding affinity for both GPR7 and GPR8 four fold. Of particular interest, several NPB analogs in which the consecutive amino acids from Pro4 to Val(13) were replaced with several units of 5-aminovaleric acid (Ava) linkers retained their potent affinity for GPR7. Furthermore, these Ava-substituted NPB analogs exhibited potent agonistic activities for GPR7 expressed in HEK293 cells. Among the Ava-substituted NPB analogs, analog 15 (Ava-5) and 17 (Ava-3) exhibited potency comparable to the parent peptide for GPR7 with significantly reduced activity for GPR8, resulting in high selectivity for GPR7. These highly potent and selective NPB analogs may be useful pharmacological tools to investigate the physiological and pharmacological roles of GPR7.  相似文献   

13.
14.
The subcellular distribution of the G protein-coupled receptor GPR37 affects cell viability and is implicated in the pathogenesis of parkinsonism. Intracellular accumulation and aggregation of GPR37 cause cell death, whereas GPR37 located in the plasma membrane provides cell protection. We define here a pathway through which the recently identified natural ligand, prosaposin, promotes plasma membrane association of GPR37. Immunoabsorption of extracellular prosaposin reduced GPR37tGFP surface density and decreased cell viability in catecholaminergic N2a cells. We found that GPR37tGFP partitioned in GM1 ganglioside-containing lipid rafts in the plasma membrane of live cells. This partitioning required extracellular prosaposin and was disrupted by lipid raft perturbation using methyl-β-cyclodextrin or cholesterol oxidase. Moreover, complex formation between GPR37tGFP and the GM1 marker cholera toxin was observed in the plasma membrane. These data show functional association between GPR37, prosaposin, and GM1 in the plasma membrane. These results thus tie together the three previously defined components of the cellular response to insult. Our findings identify a mechanism through which the receptor''s natural ligand and GM1 may protect against toxic intracellular GPR37 aggregates observed in parkinsonism.  相似文献   

15.
GPR41 and GPR43 are related members of a homologous family of orphan G protein-coupled receptors that are tandemly encoded at a single chromosomal locus in both humans and mice. We identified the acetate anion as an agonist of human GPR43 during routine ligand bank screening in yeast. This activity was confirmed after transient transfection of GPR43 into mammalian cells using Ca(2+) mobilization and [(35)S]guanosine 5'-O-(3-thiotriphosphate) binding assays and by coexpression with GIRK G protein-regulated potassium channels in Xenopus laevis oocytes. Other short chain carboxylic acid anions such as formate, propionate, butyrate, and pentanoate also had agonist activity. GPR41 is related to GPR43 (52% similarity; 43% identity) and was activated by similar ligands but with differing specificity for carbon chain length, with pentanoate being the most potent agonist. A third family member, GPR42, is most likely a recent gene duplication of GPR41 and may be a pseudogene. GPR41 was expressed primarily in adipose tissue, whereas the highest levels of GPR43 were found in immune cells. The identity of the cognate physiological ligands for these receptors is not clear, although propionate is known to occur in vivo at high concentrations under certain pathophysiological conditions.  相似文献   

16.
Summary The endogenous tryptophan metabolite quinolinic acid elicits in rodent brain a pattern of neuronal degeneration which resembles that caused by L-glutamate. Its qualities as a neurotoxic agent raised the hypothesis that quinolinic acid might be involved in the pathogenesis of human neurodegenerative disorders. Kynurenic acid, another endogenous tryptophan metabolite and preferential N-methyl-D-aspartate (NMDA) antagonist, has been shown to block quinolinic acid neurotoxicity. Here we report that microinjections of aminooxyacetic acid (AOAA), an inhibitor of kynurenine transaminase and of other pyridoxal phosphate-dependent enzymes, into the rat striatum produce neuronal damage resembling that caused by quinolinic acid. AOAA-induced striatal lesions can be prevented by kynurenic acid and the selective NMDA antagonist 2-amino-7-phosphonoheptanoic acid. These results suggest that AOAA produces excitotoxic lesions by depleting brain concentrations of kynurenic acid (inhibition of synthetic enzyme) or due to impairment of intracellular energy metabolism (depletion of cell energy resources). The concept of deficient neuroprotection due to metabolic defects might help to clarify the pathogenesis of human neurodegenerative disorders and to develop strategies that may be useful in their treatment.This work was supported by research grant from the Polish Academy of Sciences.These data have been communicated to the International Congress on Amino Acid Research held in Vienna in August 7–12, 1989.  相似文献   

17.
18.
Nucleotides and cysteinyl-leukotrienes (CysLTs) are unrelated signaling molecules inducing multiple effects through separate G-protein-coupled receptors: the P2Y and the CysLT receptors. Here we show that GPR17, a Gi-coupled orphan receptor at intermediate phylogenetic position between P2Y and CysLT receptors, is specifically activated by both families of endogenous ligands, leading to both adenylyl cyclase inhibition and intracellular calcium increases. Agonist-response profile, as determined by [(35)S]GTPgammaS binding, was different from that of already known CysLT and P2Y receptors, with EC(50) values in the nanomolar and micromolar range, for CysLTs and uracil nucleotides, respectively. Both rat and human receptors are highly expressed in the organs typically undergoing ischemic damage, that is, brain, heart and kidney. In vivo inhibition of GPR17 by either CysLT/P2Y receptor antagonists or antisense technology dramatically reduced ischemic damage in a rat focal ischemia model, suggesting GPR17 as the common molecular target mediating brain damage by nucleotides and CysLTs. In conclusion, the deorphanization of GPR17 revealed a dualistic receptor for two endogenous unrelated ligand families. These findings may lead to dualistic drugs of previously unexplored therapeutic potential.  相似文献   

19.
We isolated a novel gene in a search of the Celera data base and found that it encoded a peptidic ligand for a G protein-coupled receptor, GPR7 (O'Dowd, B. F., Scheideler, M. A., Nguyen, T., Cheng, R., Rasmussen, J. S., Marchese, A., Zastawny, R., Heng, H. H., Tsui, L. C., Shi, X., Asa, S., Puy, L., and George, S. R. (1995) Genomics 28, 84-91; Lee, D. K., Nguyen, T., Porter, C. A., Cheng, R., George, S. R., and O'Dowd, B. F. (1999) Mol. Brain Res. 71, 96-103). The expression of this gene was detected in various tissues in rats, including the lymphoid organs, central nervous system, mammary glands, and uterus. GPR7 mRNA was mainly detected in the central nervous system and uterus. In situ hybridization showed that the gene encoding the GPR7 ligand was expressed in the hypothalamus and hippocampus of rats. To determine the molecular structure of the endogenous GPR7 ligand, we purified it from bovine hypothalamic tissue extracts on the basis of cAMP production-inhibitory activity to cells expressing GPR7. Through structural analyses, we found that the purified endogenous ligand was a peptide with 29 amino acid residues and that it was uniquely modified with bromine. We subsequently determined that the C-6 position of the indole moiety in the N-terminal Trp was brominated. We believe this is the first report on a neuropeptide modified with bromine and have hence named it neuropeptide B. In in vitro assays, bromination did not influence the binding of neuropeptide B to the receptor.  相似文献   

20.
Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in β cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-13C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD+ ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying β cell insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号