首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
L-缬氨酸作为一种支链氨基酸,广泛应用于医药和饲料等领域。本研究借助多种代谢工程策略相结合的方法,构建了生产L-缬氨酸的微生物细胞工厂,实现了L-缬氨酸的高效生产。首先,通过增强糖酵解途径、减弱副产物代谢途径相结合的方式,强化了L-缬氨酸合成前体丙酮酸的供给;其次,针对L-缬氨酸合成路径关键酶—乙酰羟酸合酶进行定点突变,提高了菌株的抗反馈抑制能力,并利用启动子工程策略,优化了路径关键酶的基因表达水平;最后,利用辅因子工程策略,改变了乙酰羟酸还原异构酶和支链氨基酸转氨酶的辅因子偏好性,由偏好NADPH转变为偏好NADH,从而提高了L-缬氨酸的合成能力。在5L发酵罐中,最优谷氨酸棒杆菌工程菌株Corynebacterium glutamicum K020的L-缬氨酸产量、得率和生产强度分别达到了110g/L、0.51g/g和2.29 g/(L·h)。  相似文献   

2.
l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.  相似文献   

3.
4.
毕赤酵母作为细胞工厂在小分子代谢产物发酵和蛋白制品生物合成中扮演着重要角色,具有极其重要的工业应用价值。随着CRISPR/Cas9等新型编辑工具的开发和应用,对毕赤酵母细胞工厂进行多基因高效率的工程化改造已成为可能。本文首先对毕赤酵母工程化改造的遗传操作技术和目标方向进行了归纳总结,其次介绍了毕赤酵母作为细胞工厂的应用现状,同时探讨了毕赤酵母细胞工厂的优点及缺陷,并对其发展方向作出展望;以期为未来的毕赤酵母工程化改造研究提供参考和启示,推动毕赤酵母细胞工厂在生物产业中的创新应用。  相似文献   

5.
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
微生物细胞在自然环境或工业应用中经常受到酸胁迫,严重制约细胞生长性能和产物合成效率。为了在各种酸性环境中生存,耐酸细菌发展出多种保护机制来维持细胞内pH稳态,如氢离子消耗、细胞膜保护、代谢修饰等。因此,深入研究耐酸机制、改进菌株耐酸能力对于利用微生物发酵合成高附加值产品具有重要意义。作为模式微生物,大肠杆菌耐酸机制的研究较为透彻,近年来其耐酸性改造也取得了重大进展。本文主要总结了大肠杆菌的氧化或葡萄糖抑制系统(acid resistance system 1, AR1)、谷氨酸依赖型耐酸系统(acid resistance system 2, AR2)、精氨酸依赖型耐酸系统(acid resistance system 3, AR3)、赖氨酸依赖型耐酸系统(acid resistance system 4, AR4)和鸟氨酸依赖型耐酸系统(acid resistance system 5, AR5)、细胞膜保护以及生物大分子修复等方面的耐酸机制,并概述了利用传统代谢工程、全局转录工程和适应性实验室进化等方法构建大肠杆菌耐酸菌株的研究进展,同时展望了大肠杆菌耐酸机制及其改造的后续研究方向...  相似文献   

7.
Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.  相似文献   

8.
Catharanthus roseus plants produce many pharmaceutically important indole alkaloids, of which the bisindole alkaloids vinblastine and vincristine are antineoplastic medicines and the monoindole alkaloids ajmalicine and serpentine are antihypertension drugs. C. roseus cell cultures have been studied for producing these medicines or precursors catharanthine and vindoline for almost four decades but so far without a commercially successful process due to biological and technological limitations. The research thus focused on the one hand on engineering the bioreactor process on the other engineering the cell factory itself. This review mainly summarizes the progress made on biochemical engineering aspects of C. roseus cell cultures in bioreactors in the past decades and metabolic engineering of indole alkaloid production in recent years. The paper also attempts to highlight new strategies and technologies to improve alkaloid production and bioreactor performance. Perspectives of metabolic engineering to create new cell lines for large-scale production of indole alkaloids in bioreactors and effective combination of these up- and down-stream processing are presented.  相似文献   

9.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

10.
四乙酰基植物鞘氨醇(tetraacetyl phytosphingosine, TAPS)是一种性能卓越的天然护肤品原料,经去乙酰化后生成的植物鞘氨醇可作为前体合成保湿护肤品神经酰胺,因此广泛应用于护肤化妆品行业。非常规酵母威克汉姆西弗酵母(Wickerhamomyces ciferrii)是已知的唯一可天然分泌四乙酰基植物鞘氨醇的微生物,目前已成为四乙酰基植物鞘氨醇工业生产的宿主。本文介绍了四乙酰基植物鞘氨醇的发现、功能及其生物合成途径,综述了近年来利用单倍体筛选、诱变育种和代谢工程改造威克汉姆西弗酵母高产四乙酰基植物鞘氨醇的研究进展,并展望了实现四乙酰基植物鞘氨醇工业生产的未来发展方向。  相似文献   

11.
【目的】分析洛伐他汀工业生产菌株土曲霉HZ01的次级代谢产物合成能力,为后期的遗传改造、次级代谢产物及其基因簇挖掘提供指导。【方法】对洛伐他汀发酵条件下的样品进行了转录组分析,同时运用色谱分离技术及波谱学方法对主要次级代谢产物进行了分离和结构鉴定。【结果】洛伐他汀合成相关基因转录水平非常高,还有4个聚酮合酶(PKS)、6个非核糖体多肽合成酶(NRPS)和1个PKS-NRPS杂合酶基因进行了转录,其他PKS和NRPS基因都处于沉默状态。此外,从该菌的发酵产物中分离鉴定了10个主要副产物并确定了其结构。【结论】土曲霉HZ01是一株优良的洛伐他汀生产菌株,在构建次级代谢产物异源合成细胞工厂和鉴定次级代谢产物生物合成途径方面具有很好的应用潜力。  相似文献   

12.
13.
以解脂耶氏酵母(Yarrowia lipolytica)、巴斯德毕赤酵母(Pichia pastoris)、马克斯克鲁维酵母(Kluyveromyces marxianus)、圆红冬孢酵母(Rhodosporidium toruloides)、多形汉逊酵母(Hansenula polymorpha)为代表的非常规酵母凭借较广的底物利用谱、较强的环境耐受性等优势,已成功实现多种天然产物的高效生产。随着合成生物学及基因编辑技术的发展,针对非常规酵母代谢工程改造的工具和策略也逐渐丰富。本文介绍了几类常见的非常规酵母的生理特性、工具开发及应用现状,并总结归纳了天然产物合成优化中常用的代谢工程策略;最后讨论了现阶段非常规酵母作为天然产物合成细胞工厂的优势和不足,并对后续研究和发展趋势进行了展望。  相似文献   

14.
The modification of Escherichia coli K-12 metabolism leading to threonine overproduction is the most studied system in synthetic biology that has been used to elaborate the majority of the currently known approaches to constructing microbial producers. They include optimization of biosynthesis through search for rate-limiting stages, modification of substrate and product transport, elimination of side metabolic pathways and degradation systems, reinforcement of the regeneration of coenzymes that are required for product biosynthesis, and exclusion of futile cycles and metabolic pathways with low energy efficiency. Extensive research in functional genomics made it possible to selectively remove the “unnecessary genes,” the functions of which are useless for producing a strain or adversely affect its properties. In total, using various approaches to designing threonine-producing strains, over 150 genome loci that affect more than 30% genes in E. coli were directly modified, thus providing interesting data for researchers in the field of microbial synthesis, as well as in related biological sciences. This review is dedicated to the assessment of genetic engineering modifications in E. coli metabolism (primarily, on the basis of modern patent literature) that ensure threonine overproduction.  相似文献   

15.
Increasing demands for bioactive compounds have motivated researchers to employ micro-organisms to produce complex natural products. Currently, Bacillus subtilis has been attracting lots of attention to be developed into terpenoids cell factories due to its generally recognized safe status and high isoprene precursor biosynthesis capacity by endogenous methylerythritol phosphate (MEP) pathway. In this review, we describe the up-to-date knowledge of each enzyme in MEP pathway and the subsequent steps of isomerization and condensation of C5 isoprene precursors. In addition, several representative terpene synthases expressed in B. subtilis and the engineering steps to improve corresponding terpenoids production are systematically discussed. Furthermore, the current available genetic tools are mentioned as along with promising strategies to improve terpenoids in B. subtilis, hoping to inspire future directions in metabolic engineering of B. subtilis for further terpenoid cell factory development.  相似文献   

16.
17.

We have recently developed Corynebacterium glutamicum strains that produce free fatty acids in culture supernatant due to enhanced fatty acid biosynthesis. Of these producing strains, the basic producer PAS-15 has a defect in the gene for a fatty acid biosynthesis repressor protein, and the advanced producer PCC-6 has two additional mutations to augment the production by strain PAS-15. The aim of the present study was to obtain novel genetic traits for improving fatty acid production by these producers. A new mutant with increased production derived from strain PAS-15 had a missense mutation in the accD3 gene (mutation accD3A433T), which is involved in the biosynthesis of mycolic acids that are cell envelope lipids of C. glutamicum, as the causal mutation. Mutation accD3A433T was verified to reduce the AccD3 enzymatic activity and increase fatty acid production in strain PAS-15 by 1.8-fold. Deletion of the accD3 gene in strain PAS-15, which was motivated by the characteristic of mutation accD3A433T, increased fatty acid production by 3.2-fold. Susceptibility of strain PAS-15 to vancomycin was significantly increased by accD3 gene deletion and by mutation accD3A433T to the intermediate level, suggesting that the cell envelope permeability barrier by mycolic acids is weakened by this engineering. Furthermore, mutation accD3A433T also increased fatty acid production in strain PCC-6 by 1.3-fold. These increased production levels were suggested to be involved not only in the redirection of carbon flux from mycolic acid biosynthesis to fatty acid production but also in the permeability of the cell envelope.

  相似文献   

18.
Streptomyces are important industrial bacteria that produce pharmaceutically valuable polyketides. However, mass production on an industrial scale is limited by low productivity, which can be overcome through metabolic engineering and the synthetic biology of the host strain. Recently, the introduction of an auto-inducible expression system depending on microbial physiological state has been suggested as an important tool for the industrial-scale production of polyketides. In this study, titer improvement by enhancing the pool of CoA-derived precursors required for polyketide production was driven in a quorum sensing (QS)-dependent manner. A self-sustaining and inducer-independent regulatory system, named the QS-based metabolic engineering of precursor pool (QMP) system, was constructed, wherein the expression of genes involved in precursor biosynthesis was regulated by the QS-responsive promoter, scbAp. The QMP system was applied for neoaureothin production in a heterologous host, Streptomyces coelicolor M1152, and productivity increased by up to 4-fold. In particular, the engineered hyperproducers produced high levels of neoaureothin without adversely affecting cell growth. Overall, this study showed that self-regulated metabolic engineering mediated by QS has the potential to engineer strains for polyketide titer improvement.  相似文献   

19.
L-鸟氨酸是一种非蛋白类氨基酸参与尿素代谢及生物多胺类的合成,其对人体具有治疗肝脏疾病、增强免疫力等作用,被广泛应用于医疗、保健、食品等领域。工业上生产鸟氨酸主要有化学法、酶法及工业发酵法。其中,发酵法因其生产成本及环境保护等方面的优势而逐渐成为研究的焦点。本文归纳了近年来采用基因工程技术选育鸟氨酸高产菌种最新研究进展,重点讨论了产鸟氨酸谷氨酸棒杆菌的代谢工程改造策略,并对未来的研究方向进行了预测。  相似文献   

20.
Erythritol is a natural sweetener commonly used in the food and pharmaceutical industries. Produced by microorganisms as an osmoprotectant, it is an ideal sucrose substitute for diabetics or overweight persons due to its almost zero calorie content. Currently, erythritol is produced on an industrial scale through the fermentation of sugars by some yeasts, such as Moniliella sp. However, the popularity of erythritol as a sweetener is still small because of its high retail price. This creates an opportunity for further process improvement. Recent years have brought the rapid development of erythritol biosynthesis methods from the low-cost substrates, and a better understanding of the metabolic pathways leading to erythritol synthesis. The yeast Yarrowia lipolytica emerges as an organism effectively producing erythritol from pure or crude glycerol. Moreover, novel erythritol producing organisms and substrates may be taken into considerations due to metabolic engineering. This review focuses on the modification of erythritol production to use low-cost substrates and metabolic engineering of the microorganisms in order to improve yield and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号