首页 | 本学科首页   官方微博 | 高级检索  
   检索      

谷氨酸棒杆菌代谢工程高效生产L-缬氨酸北大核心CSCD
引用本文:赵阔,程金宇,郭亮,高聪,宋伟,吴静,刘佳,柳亚迪,刘立明,陈修来.谷氨酸棒杆菌代谢工程高效生产L-缬氨酸北大核心CSCD[J].生物工程学报,2023,39(8):3253-3272.
作者姓名:赵阔  程金宇  郭亮  高聪  宋伟  吴静  刘佳  柳亚迪  刘立明  陈修来
作者单位:江南大学 食品科学与技术国家重点实验室, 江苏 无锡 214122;江南大学 食品安全国际合作联合实验室, 江苏 无锡 214122;江南大学生命科学与健康工程学院, 江苏 无锡 214122
基金项目:江苏省农业科技自主创新资金项目(CX(22)1012);国家自然科学基金(22122806, 22208124, 32000037);江苏省自然科学基金(BK20211529, BK20200614)
摘    要:L-缬氨酸作为一种支链氨基酸,广泛应用于医药和饲料等领域。本研究借助多种代谢工程策略相结合的方法,构建了生产L-缬氨酸的微生物细胞工厂,实现了L-缬氨酸的高效生产。首先,通过增强糖酵解途径、减弱副产物代谢途径相结合的方式,强化了L-缬氨酸合成前体丙酮酸的供给;其次,针对L-缬氨酸合成路径关键酶—乙酰羟酸合酶进行定点突变,提高了菌株的抗反馈抑制能力,并利用启动子工程策略,优化了路径关键酶的基因表达水平;最后,利用辅因子工程策略,改变了乙酰羟酸还原异构酶和支链氨基酸转氨酶的辅因子偏好性,由偏好NADPH转变为偏好NADH,从而提高了L-缬氨酸的合成能力。在5L发酵罐中,最优谷氨酸棒杆菌工程菌株Corynebacterium glutamicum K020的L-缬氨酸产量、得率和生产强度分别达到了110g/L、0.51g/g和2.29 g/(L·h)。

关 键 词:谷氨酸棒杆菌  L-缬氨酸  代谢工程  路径优化
收稿时间:2022/12/13 0:00:00
修稿时间:2023/2/17 0:00:00

Highly efficient production of L-valine by multiplex metabolic engineering of Corynebacterium glutamicum
ZHAO Kuo,CHENG Jinyu,GUO Liang,GAO Cong,SONG Wei,WU Jing,LIU Ji,LIU Yadi,LIU Liming,CHEN Xiulai.Highly efficient production of L-valine by multiplex metabolic engineering of Corynebacterium glutamicum[J].Chinese Journal of Biotechnology,2023,39(8):3253-3272.
Authors:ZHAO Kuo  CHENG Jinyu  GUO Liang  GAO Cong  SONG Wei  WU Jing  LIU Ji  LIU Yadi  LIU Liming  CHEN Xiulai
Institution:State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, China;School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
Abstract:As a branched chain amino acid, L-valine is widely used in the medicine and feed sectors. In this study, a microbial cell factory for efficient production of L-valine was constructed by combining various metabolic engineering strategies. First, precursor supply for L-valine biosynthesis was enhanced by strengthening the glycolysis pathway and weakening the metabolic pathway of by-products. Subsequently, the key enzyme in the L-valine synthesis pathway, acetylhydroxylate synthase, was engineered by site-directed mutation to relieve the feedback inhibition of the engineered strain. Moreover, promoter engineering was used to optimize the gene expression level of key enzymes in L-valine biosynthetic pathway. Furthermore, cofactor engineering was adopted to change the cofactor preference of acetohydroxyacid isomeroreductase and branched-chain amino acid aminotransferase from NADPH to NADH. The engineered strain C. glutamicum K020 showed a significant increase in L-valine titer, yield and productivity in 5 L fed-batch bioreactor, up to 110 g/L, 0.51 g/g and 2.29 g/(L·h), respectively.
Keywords:Corynebacterium glutamicum  L-valine  metabolic engineering  pathway optimization
本文献已被 维普 等数据库收录!
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号