首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

2.
The success of alley cropping depends to a large extent on the efficiency of transfer of nitrogen (N) from the legume hedgerow plants to the non-legume crop. Here the idea is examined that leucaena prunings (residues) can supply enough N to maize plants to significantly reduce the degree of N deficiency. Two experiments on decomposition of leucaena leaf, stem, and petiole and mineralization of N from leucaena residues were conducted in field microplots which received application of either15N-labelled leucaena materials or ammonium sulphate fertilizer. The microplots were installed in alleys formed by leucaena hedgerows spaced 4.5 metres apart and cropped with maize. The decomposition of leucaena leaves, stems and petioles was estimated by several methods. The decomposition ranged from 50–58% with leaves, 25–67% with stems and 38–51% with petioles 20 days after addition. More than 55% of the N was released in 52 days during decomposition of leucaena residues. By 20 days after application of15N-labelled leucaena 3.3–9.4% of the added15N was found in the maize plants, 32.7–49.0% was in the leucaena residues, 36.0–48.0% in the soil and 0.3–21.9% lost (deficit). By 52 days 4.8% of the15N applied in leucaena prunings was taken up by maize, 45.1% was detected in the residues, 24.9% in the soil and 25.2% lost. However, when N fertilizer was applied, 50.2% of the fertilizer N was recovered by maize, 35.5% was retained in the soil and 14.3% apparently lost. There was a marked increase in maize plant dry matter and N uptake in the microplots with addition of leucaena prunings compared with those in the microplots without leucaena added. Most of the15N remaining in the soil profile, derived from leucaena residues, was detected in the top 25 cm soil with less than 2% found below 25 cm. ei]H Lambers  相似文献   

3.
In an alley cropping system, prunings from the hedgerow legume are expected to supply nitrogen (N) to the associated cereal. However, this may not be sufficient to achieve maximum crop yield. Three field experiments with alley-cropped maize were conducted in a semi-arid environment in northern Australia to determine: (1) the effect of N fertilizer on maize growth in the presence of fresh leucaena prunings; (2) the effect of incorporation of leucaena and maize residues on maize yield and the fate of plant residue15N in the alley cropping system; and (3) the15N recovery by maize from15N-labelled leucaena, maize residues and ammonium sulphate fertilizer.Leucaena residues increased maize crop yield and N uptake although they did not entirely satisfy the N requirement of the alley crop. Additional N fertilizer further increased the maize yield and N uptake in the presence of leucaena residues. Placement of leucaena residues had little effect on the availability of N to maize plants over a 2 month period. The incorporation of leucaena residues in the soil did not increase the recovery of leucaena15N by maize compared with placement of the residues on the soil surface. After 2 months, similar proportions of the residue15N were recovered by maize from mulched leucaena (6.3%), incorporated leucaena (6.1%) and incorporated maize (7.6%). By the end of one cropping season (3 months after application) about 9% of the added15N was taken up by maize from either15N-labelled leucaena as mulch or15N-labelled maize residues applied together with unlabelled fresh leucaena prunings as mulch. The recovery of the added15N was much higher (42.7%) from the15N-labelled ammonium sulphate fertilizer at 40 kg N ha-1 in the presence of unlabelled leucaena prunings. Most of the added15N recovered in the 200 cm soil profile was distributed in the top 25 cm soil with little leached below that. About 27–41% of the leucaena15N was apparently lost, largely through denitrification from the soil and plant system, in one cropping season. This compared with 35% of the fertilizer15N lost when the N fertilizer was applied in the presence of prunings. ei]H Lambers  相似文献   

4.
Prunings of Calliandra calothyrsus, Grevillea robusta, Leucaena diversifolia and farm yard manure were applied each cropping season at 3 and 6 t dry matter ha−1 to an Oxisol in Burundi. The field plots also received basal applications of nitrogen (N), phosphorus (P) and potassium (K). Application of the tree prunings or farm yard manure decreased the concentration of monomeric inorganic aluminium (Al) in soil solution from 2.92 mg Al dm−3 in the control plots to 0.75 mg Al dm−3 in the plots receiving 6 t ha−1 Calliandra prunings. The other organic materials also decreased the concentration of monomeric inorganic aluminium in the soil solution. The lowered Al concentration led to a corresponding decrease in the percentage Al saturation of the 0–10 cm soil layer from 80% to 68%. Grain yields of maize and beans were strongly inversely related to the percentage Al saturation of the soil. This confirms that soil acidity was the main constraint to maize and beans production. The yield improvement was mainly attributed to the ameliorating effects of the organic matter application on Al toxicity. The nutrient content had less effect presumably because of fertilizer use. In the best treatments, the yield of maize increased from 0.9 to 2.2 t ha−1 and the corresponding beans yield increased from 0.2 to 1.2 t ha−1. A C Borstlap Section editor  相似文献   

5.
The development of alley cropping systems is based on the assumption that leguminous trees planted in hedgerows influence the yield of associated crops favourably by means of the additional nutrient pool applied to the soil through tree prunings. An on-station field study (split-plot design in a randomised block design) was conducted on an Eutric Cambisol under humid premontane climate conditions in Costa Rica in order to evaluate the ability of Erythrina poeppigiana, Calliandra calothyrsus and Gliricidia sepium to increase bean (Phaseolus vulgaris) yields compared to sole cropping. Soil tillage was applied as a sub-treatment in order to evaluate if soil preparation would additionally alter soil fertility and bean yield. After seven years with pruning twice per year, the size of both the total N and P pool in the pruned tree material was about three times higher for Erythrina prunings than for Calliandra and Gliricidia prunings. Two and five weeks after mulch application 50–150% higher inorganic N pools were measured in the soil from Erythrina plots, the bean shoot biomass at harvest was increased by 65–100% and the bean yield was 15–50% higher than in plots with beans alone. Hence, of the three tree species, Erythrina was the best choice for alley cropping systems in the pedoclimatic environment studied. Soil tillage reduced bean yield, soil organic matter, total soil N content and soil microbial biomass N in the top soil and is not recommended for similar soils in humid premontane climates.  相似文献   

6.
The design of productive and efficient intercropping systems depends on achieving complementarity between component species resource capture niches. Spatiotemporal patterns of capture and use of pruning and urea nitrogen (N) by trees and intercrops were elucidated by isotopic tracing, and consequences for nitrogen use efficiency were examined. During the first cropping season after applying urea–15N, maize accounted for most of the plant 15N recovery in Peltophorum dasyrrachis (33.5%) and Gliricidia sepium (22.3%) hedgerow intercropping systems. Maize yield was greatest in monoculture, and maize in monoculture also recovered a greater proportion of urea 15N (42%) than intercropped maize. Nitrogen recovery during active crop growth will not be increased by hedgerow intercropping if hedgerows adversely affect crop growth through competition for other resources. However, hedgerows recovered substantial amounts of 15N during both cropping cycles (e.g. a total of 13–22%), showing evidence of spatio-temporal complementarity with crops in the spatial distribution of roots and the temporal distribution of Nuptake. The degree of complementarity was species-specific, showing the importance of selecting appropriate trees for simultaneous agroforestry. After the first cropping season 17–34% of 15N applied was unaccounted for in the plant-soil system. Urea and prunings N were recovered by hedgerows in similar amounts. By the end of the second (groundnut) cropping cycle, total plant 15N recovery was similar in all cropping systems. Less N was taken up by the maize crop from applications of labelled prunings (5–7%) than from labelled urea (22–34%), but the second crop recovered similar amounts from these two sources, implying that prunings N is more persistent than urea N. More 15N was recovered by the downslope hedgerow than the upslope hedgerow, demonstrating the interception of laterally flowing N by hedgerows.  相似文献   

7.
Cadisch  G.  Handayanto  E.  Malama  C.  Seyni  F.  Giller  K.E. 《Plant and Soil》1998,205(2):125-134
Nitrogen recovery from 15N-labelled prunings of Gliricidia sepium, Peltophorum dasyrrachis, Calliandra calothyrsus and Leucaena leucocephala, each of two different chemical qualities, was followed over three cropping cycles in a growth room. Half of the pots of each treatment received a further addition of unlabelled pruning material, from the same species as that previously applied, before the second and third crop cycle. The cumulative maize total N accumulation revealed the largest benefit from N rich, low lignin and polyphenols Gliricidia prunings followed by Leucaena, Calliandra and Peltophorum. Cumulative N recovery measured using 15N over the three crop cycles ranged from 9% from Calliandra prunings to 44% from Gliricidia prunings. The vast majority of this N was recovered during the first crop cycle which agreed well with estimates using the N difference method. Recoveries in the second and third crops ranged from 0.4–5% (15N method) and 6–14% (N difference method) of the N initially applied. The protein binding capacity of polyphenols was the best predictor of N recovery at both initial and later crop cycles. Treatments which led to a large N recovery initially, continued to provide greater N benefits in subsequent cycles although with increasing harvest time this trend decreased. Thus, there was no compensation in initial N release from low quality prunings at later harvests and the agronomic implications of this are discussed. Addition of unlabelled Gliricidia prunings before the second and third cycle led to a positive apparent priming effect on previously applied 15N labelled prunings. By contrast, repeated additions of Peltophorum residues, rich in lignin and active polyphenols, resulted in a reduced recovery of initially applied pruning-15N. However, the maximum positive or negative effects on recovery of pruning N amounted to less than 2% recovery of the initial amount of N added over 14 weeks. Thus the scope for regulation of N release from tree prunings during these later stages of decomposition appears to be limited.  相似文献   

8.
Crop response, tree biomass production and changes in soil fertility characteristics were monitored in a long-term (1986–2002) alley-cropping trial in Ibadan, Nigeria. The systems included two alley cropping systems with Leucaena leucocephala and Senna siamea on the one hand and a control (no-trees) system on the other hand, all cropped annually with a maize–cowpea rotation. All systems had a plus and minus fertilizer treatment. Over the years, the annual biomass return through tree prunings declined steadily, but more drastically for Leucaena than for Senna. In 2002, the nitrogen contribution from Leucaena residues stabilized at about 200 kg N/ha/year, while the corresponding value for Senna was about 160 kg N/ha/year. On average, the four Leucaena prunings were more equal in biomass as well as in amounts of N, P and cations, while the first Sennapruning was always contributing up to 60% of the annual biomass or nutrient return. Maize crop yields declined steadily in all treatments, but the least so in the Senna + fertilizer treatment where in 2002 still 2.2 tonnes/ha of maize were obtained. Nitrogen fertilizer use efficiency was usually higher in the Senna treatment compared to the control or the Leucaena treatment. Added benefits due to the combined use of fertilizer N and organic matter additions were observed only for the Sennatreatment and only in the last 6 years. At all other times, they remained absent or were even negative in the Leucaenatreatments for the first 3 years. Most chemical soil fertility parameters decreased in all the treatments, but less so in the alley cropping systems. The presence of trees had a positive effect on remaining carbon stocks, while they were reduced compared to the 1986 data. Trees had a positive effect on the maintenance of exchangeable cations in the top soil. Exchangeable Ca, Mg and K – and hence ECEC – were only slightly reduced after 16 years of cropping in the tree-based systems, and even increased in the Senna treatments. In the control treatments, values for all these parameters reduced to 50% or less of the original values after 16 years. All the above points to the Senna-based alley system with fertilizers as the more resilient one. This is reflected in all soil fertility parameters, in added benefits due to the combined use of fertilizer nitrogen and organic residue application and in a more stable maize yield over the years, averaging 2.8 tonnes/ha with maximal deviations from the average not exceeding 21%.  相似文献   

9.
Summary The effects of three water table (WT) depths (0, 15 and 40 cm) and calcium peroxide (Calper) on the growth and yield of cowpea (Vigna unguiculata, L.) and soybean (Glycine max) were investigated in field lysimeters for a sandy loam soil. Cowpea growth was the best at 40 cm WT depth. Leaf area, plant height, dry matter production, number of leaves and pods, grain yield and consumptive water use of cowpea increases with deeper (lower) WT depth. Application of calcium peroxide improved per cent emergence, leaf area, dry matter, number of leaves and pods, weight of 100 seeds, grain yield and water use in cowpea. The optimum WT depth for vegetative growth of soybean was 15 cm, although the highest grain yield was obtained at 40 cm WT depth. Number of pods, grain yield and water use efficiency of soybean increased with deeper water table depth. Application of calcium peroxide to soybean increased number of leaves and pods per plant, and grain yield for the 15 cm WT depth treatment.  相似文献   

10.
Maize (Zea mays L.) and ricebean (Vigna umbellata [Thumb.] Ohwi and Ohashi) were grown in intercrop and monoculture on Tropaqualf soils under rainfed conditions in Northern Thailand yearly from 1983 to 1986. De Wit's replacement design was used to compare intercrops and monocultures with a constant plant density equivalent to 80 000 maize or 160 000 ricebean plants ha−1. Combined nitrogen was applied at varying levels to 200 kg N ha−1. In the final two seasons the intercrop ratio of maize: ricebean was also varied. At the time of maize maturity intercrops yielded upt 49 kg ha−1 more N in the above ground plant parts than the best monoculture. Dry matter, grain and nitrogen yield of maize and ricebean in intercrop relative to their monoculture yields (RY, relative yield) were significantly greater than their respective share of the plant population. Relative yield totals (RYT) for grain, dry matter and nitrogen were always greater than 1. Nitrogen uptake per maize plant increased with progressive replacement of maize by ricebean plants. This increase was similar to that obtained by applying combined N. Available soil nitrogen tended to decrease with increasing maize:ricebean ratio. Increasing the maize:ricebean ratio increased the % of nitrogen derived from fixation in ricebean, the increase being equivalent to that obtained by decreasing combined nitrogen application. Approximately the same amount of fertilizer and soil nitrogen was taken up by maize plus ricebean in intercrop as the maize monoculture. The results suggest that the improved nitrogen economy of the intercrop resulted from the strong competitiveness of maize in the use of mineral nitrogen and the enhancement of nitrogen fixation in intercropped ricebean which made it less dependent on the depleted pool of soil nitrogen.  相似文献   

11.
The effect of N supply on the quality of Calliandra calothyrsus and Gliricidia sepium prunings was studied in a glasshouse over a 7-month growing period. Increasing the concentration of N supplied from 0.625 to 10.0 mM NO3-N resulted in increased N concentration but decreased polyphenol concentration, protein-binding capacity and C:N ratio of prunings from both species. Lignin concentration was not consistently altered by the N treatment. Mineralization of N from the prunings was measured over a 14-week period under controlled leaching and non-leaching conditions. The results indicated a strong interaction between legume species and concentration of N supply in their influence on N mineralization of the prunings applied to the soil. Differences in the %N mineralized were dictated by the quality of the prunings. The (lignin + polyphenol):N ratio was the pruning quality factor which could be used most consistently and accurately to predict N mineralization of the legume prunings incubated under leaching conditions, and the relationship was best described by a linear regression. Under non-leaching conditions, however, the protein-binding capacity appeared to be the most important parameter in determining the patterns of N release from the prunings studied. The relationship between the N mineralization rate constant and the protein-binding capacity was best described by a negative exponential function, y=0.078 exp(–0.0083x). The present study also indicated that the release of N from legume prunings containing a relatively high amount of polyphenol could be enhanced by governing the N availability conditions under which the plant is grown, for example whether or not it is actively fixing nitrogen. Estimates of pruning N mineralization after 14 weeks with the difference method averaged 6% (leaching conditions) and 22% (nonleaching conditions) more than with the 15N method for all legume prunings studied. The recovery of pruning by maize (4–38%) was well correlated with the % pruning N mineralized suggesting that incubation data closely reflect the pruning N value for a given catch crop under non-leaching conditions.  相似文献   

12.
Vanlauwe  B.  Aihou  K.  Houngnandan  P.  Diels  J.  Sanginga  N.  Merckx  R. 《Plant and Soil》2001,228(1):61-71
Although the West-African moist savanna zone has a high potential for crop production, yields on farmers' fields are, on average, far below this potential, mainly due to the low use of external sources of nutrients. Since the mid-1990s, it has become clear that in order to upgrade crop production to levels needed to sustain the growing population without further degrading the soil resource base, inorganic fertilizers are required. Due to the physico-chemical nature of these soils and the relatively high cost of inorganic fertilizers, a general consensus exists in the research and development community that these inorganic inputs need to be complemented with organic matter. Here, we explore options to produce organic matter in-situ and evaluate the impact of combining inorganic and organic sources of N on maize yields, focusing on the densely populated derived savanna (DS) benchmark of Benin Republic. Although most of the farmers (93%) in this benchmark use inorganic fertilizer, applications rates are low (on average, 27 kg N ha–1). A significant response to N was observed for 96% of the studied farmers' fields.Grain and herbaceous legumes were observed to produce between 383 and 8700 kg dry matter ha–1 in the benchmark area. Inoculation with Rhizobia and inorganic P additions were shown to significantly improve biomass production on sites with low contents of Rhizobia and P. Although maize grain yield was observed to increase significantly following a legume compared with following a maize crop or natural fallow, these increases were insufficient in the case of a cowpea crop or were obtained at the cost of leaving the field `idle' for a whole year in the case of a herbaceous Mucuna fallow. Topping up a cowpea haulms equivalent of 45 kg N ha–1 with 45 kg urea–N ha–1 was shown to give maize yields similar to the yields obtained after applying 90 kg urea–N ha–1 on the poorest fields. Moreover, on these fields, a positive interaction between cowpea–N and urea–N sources of 200 kg grain ha–1 was observed. On the richest fields, the effects of applied organic matter and fertilizer were additive.Agroforestry systems are alternative cropping systems that produce organic matter in-situ. As tree roots go down below the rooting depth of food crops, sub-soil fertility was observed to influence tree biomass production. Yield increases in tree-crop intercrop systems – such as alley cropping – in the absence of inorganic inputs are often reduced by the occurrence of tree-crop competition. In cut-and-carry systems, where tree prunings are harvested from a field adjacent to the crop land, increases in maize grain yield caused by addition of those prunings were observed to be on the low side. Mixing these residues with urea, however, was shown to lead to added benefits of about 500 kg grains ha–1, relative to the treatments with sole inputs of organic matter or urea. Although residue quality was shown to affect maize N uptake in a pot trial, its impact under field conditions was minimal for the range of considered residue qualities. In an alley cropping trial, maize yield was shown to be sustained on a non-degraded site and enhanced on a degraded site, when a minimal amount of mineral fertilizer was added with the prunings, whereas fertilizer application alone failed to do so in both cases.  相似文献   

13.
Leonard jar, pot and field experiments examined the effects of inoculation and the influence of nitrogen fertilizer on nodulation, nitrogen fixation and growth ofLeucaena leucocephala (Lam.) de Wit at IITA, Ibadan, Nigeria. Leucaena responded to both inoculation and/or nitrogen application. Shoot growth and total N and P of inoculated plants were comparable to those of the highest N treatment, and the values were about 55% greater than those of uninoculated ones. Field data indicated that toal N yields of inoculated leucaena were increased by 50% with 40 or 80 kg ha–1 of N fertilizer. However, N fertilizer depressed N fixation by 56% as was expected from nodule mass data. N-fixation was delayed for about 8 weeks in the plots without N. Application of small amounts of N starter (20 ppm) proved to be beneficial to satisfy the plant need during the early stage of leucaena growth. The rhizobial strains IRc 1045 and IRc 1050 were effective, competitive and survived well in the field one year after their establishment.  相似文献   

14.
In the northern Guinea Savanna of Ghana (1984–1987) a field experiment was conducted to study the reasons for beneficial effects of rotating maize (Zea mays) and cowpea (Vigna unguiculata) on yield and N and P use of maize. The treatments included two cropping systems, maize monocropping and maize/cowpea rotation, two levels of nitrogen (0 and 80 kg N ha-1 as urea) and two levels of phosphorus application (0 and 60 kg ha-1 P as Volta phosphate rock). Yields and nutrient accumulation of maize were larger in rotation than in monocropping, independent of the N and P level. Fertilizer application (N and P) increased yields of maize in both cropping systems to the same extent. Nitrate contents of the soil after cowpea and after maize monoculture were comparable at the beginning of the cropping period. Also, potential nitrogen mineralization was only slightly larger after cowpea in the unfertilized plots. However, soil nitrate of fertilized plots was similar or even higher under monocropping than under crop rotation, especially in deeper soil layers and at the end of the cropping period. This indicates that in addition to the availability of mineral N, its use by the plants was limiting for the productivity of maize. Root length densities of maize were significant lower in monocropped maize than in maize grown in rotation. Soil physical parameters (infiltration, bulk density, aggregate stability and water capacity) showed a significant deterioration compared to a bush fallow plot, but differed only slightly between the cropping systems. Also in a pot experiment maize growth was much better in the soil from the crop rotation than from the monocropping plots, provided P was eliminated as the main growth-limiting factor. Since this effect persisted in spite of N application and optimization of soil physical properties by mixing the soil with polystyrol it is concluded that the results indicate that yield decline in maize monocropping might be due to allelopathic effects.  相似文献   

15.
Effects of application of prunings of three woody species (Acioa barteri, Gliricidia sepium and Leucaena leucocephala), maize (Zea mays L.) stover and rice (Oryza sativa L.) straw as mulch on maize were studied on an Alfisol in southern Nigeria in 1990 and 1991. Maize dry matter and grain yield were higher with applications of plant residues and N fertilizer in both years. Addition of Leucaena prunings gave the highest maize grain yield in both years. Compared to the 1990 results, Acioa showed the least grain yield decline among the mulch treatments in 1991. Nutrient uptake was enhanced by applications of plant residues. Leucaena prunings had the highest effect in both years and increased the mean N, P, and Mg uptake by 96%, 84%, and 50%, respectively, over the control. Addition of Acioa prunings increased K and Ca uptake by 59% and 92%, respectively, over the control. High quality (low C/N ratio and lignin level) plant residues enhance crop performance through direct nutritional contributions, whereas low quality (high C/N ratio and lignin level) plant residues do so through mulching effects on the microclimate. Intermediate quality plant residues have no clear effects on crop performance.  相似文献   

16.
为倡导减量施用化学氮肥,探索科学施肥模式,以达到绿色、稳产、高产的种植目标,通过田间试验,以空白处理(CK0)、常规施氮(CK1)为对照,设置减氮比例和配施有机肥两因素试验,减氮比例设减氮20%(A1)、减氮40%(A2);配施有机肥设:不配施有机肥(B0)、配施普通有机肥(B1)、配施生物有机肥(B2),研究了减氮配施不同种类有机肥对玉米物质积累分配、转运及产量的影响,为玉米化学氮肥减量增效技术提供科学依据。结果表明:随化学氮肥施用量的减少,玉米干物质积累量及产量降低;配施有机肥显著提高了干物质积累量、籽粒分配比例、吐丝后干物质对籽粒的贡献率和产量;减氮20%配施普通有机肥、生物有机肥处理较不配施有机肥处理,两年干物质积累量平均分别提高了31.38%和46.29%(P<0.05);产量分别提高了19.57%和23.78%,较常规施氮处理产量分别提高了7.15%和10.95%;减氮40%配施普通有机肥、生物有机肥处理较不配施有机肥处理,两年干物质积累量平均分别提高了19.68%和35.13%;产量分别提高了6.33%和7.48%(P<0.05),而产量较常规施氮处理分别降低了10.42%和9.44%(P<0.05);适量减氮并配施有机肥可促进玉米物质积累,改善穗部性状,最终提高产量;本试验条件下,配施1500 kg·hm^-2有机肥可实现化学氮肥减量20%并使玉米增产,且配施生物有机肥增产效果最好。  相似文献   

17.
以陇东黄土旱塬已进行7年的田间定位试验为基础,分析了免耕和传统耕作条件下5个施肥处理冬小麦收获期土壤水分、土壤容重(2011年)及土壤养分和产量(2005-2011年)变化,探讨了耕作方式和施肥对冬小麦-春玉米轮作农田土壤蓄水保墒效果及土壤肥力和产量的影响.结果表明: 2011年免耕条件下0~200 cm各土层土壤含水量、0~20 cm和20~40 cm土层土壤容重及土壤有机质、速效氮、速效磷含量均高于传统耕作.相同耕作条件下氮磷化肥与有机肥配施处理的土壤有机质、速效氮、速效磷含量高于其他施肥处理;不同耕作方式及施肥处理下速效钾呈逐年减少的趋势;传统翻耕处理的产量高于免耕,相同耕作条件下氮磷化肥与有机肥配施处理产量最高,不施肥对照产量最低.不同耕作方式和施肥处理的土壤蓄水保墒能力和肥力效应以免耕优于传统翻耕,产量以传统翻耕下有机无机肥配施处理最好.  相似文献   

18.
合理的密度是玉米构建良好群体结构、优化群体光合生理功能的基础,适宜的氮肥施用量是玉米进行光合生产的营养物质保障.运用作物群体生理学的方法,采用二次饱和D试验设计,研究了关中灌区夏玉米密度与氮肥耦合和群体光合生理指标的关系及其效应,明确了在关中灌区夏播条件下,在45000~75000株/hm2的密度范围内,密度与玉米籽粒产量、总干物质积累量(DMA)、吐丝期叶面积指数(MLAI)、总光合势(LAD)、平均作物生长率(CGR)为正相关,在45000~60000株/hm2的密度范围内,密度与玉米叶片平均净同化率(NAR)为正相关,而在60000~75000株/hm2的密度范围内,密度与玉米NAR为负相关;在氮素施用量≤600.0 kg/hm2的范围内,氮素施用量与玉米籽粒产量、DMA、CGR为正相关,在氮素施用量≤260.55 kg/hm2的范围内,氮素施用量与玉米MLAI、LAD为正相关,与玉米NAR为负相关,而在氮素施用量260.55~600.0kg/hm2的范围内,氮素施用量与玉米MLAI、LAD为负相关,与玉米NAR为正相关.密度对其影响较大的指标为:籽粒产量、DMA、LAD、CGR和MLAI , 影响较小的指标为:NAR;氮肥对其影响较大的指标为:DMA、CGR、籽粒产量、NAR,影响较小的指标为:LAD和MLAI .对籽粒产量和群体生理指标的综合影响效应,密度显著大于氮肥,玉米生产中,尤其要重视合理密植.通过对回归模型的解析,筛选确定了陕单8806玉米在关中灌区夏播中,实现高产的密度与氮肥耦合优化技术方案:合理密度为61713~66177株/hm2,适宜纯氮施用量为309.88~569.02kg/hm2.  相似文献   

19.
A long-term field experiment was established on a kaolinitic Alfisol in Ibadan, Nigeria, in 1972. The land was cleared manually from secondary forest and used for (i) continuous no-till cropping with maize (Zea mays L.) and maize/cassava (Manihot esculenta Crantz) intercropping, (ii) planted fallow of guinea grass (Panicum maximum Jacq.), leucaena (Leucaena leucocephala de Wit), and pigeon pea (Cajanus cajan Millsp.), and (iii) natural bush regrowth in a randomized complete block design with three replications. At the end of 15 years, the fallow plots were cleared manually and cropped with maize for three years. The chemical and physical soil properties and crop performance of the newly-cleared plots were compared with those under 15 years of continuous cultivation. A total of 26 woody species were identified on the bush regrowth plots. Above-ground biomass accumulation of the bush plots was 157 Mg ha-1 containing 1316 kg N ha-1. Guinea grass, leucaena and natural bush regrowth plots had comparable organic C concentrations (approximately 20 g kg-1) in the surface soil (0 to 10 cm) after 15 years. The organic C concentration in the surface soil under pigeon pea was the lowest (9.5 g kg-1) among the four fallow treatments. Soil under 15 years of continuous no-till maize with and without residue mulch, respectively, contained approximately half (10 g kg-1) and a quarter (5.7 g kg-1) of the organic C under natural bush or guinea grass fallow. The levels of exchangeable Ca, K, Mg and effective cation exchange capacity (ECEC) were lower in the soils under continuous cultivation than in those under natural bush and planted fallow. Soil acidification occurred in soils under continuous cropping as depicted by the lower pH values and greater exchangeable Al and Mn concentrations compared to the fallow plots. Grain yield of maize (3 to 5 Mg ha-1) without fertilizer application in the plots newly cleared from natural bush, guinea grass and leucaena fallow was comparable with that of continuous no-till maize with residue mulch and chemical fertilizer (N, P, K, Mg, Zn) applications. Among the four fallow treatments, maize grain and stover yields were the lowest in plots cleared from pigeon pea fallow.  相似文献   

20.
Summary Studies revealed that the application of fertilizer nitrogen brought a significant increase in grain and straw yield of wheat. The significant effect was also noticed on such yield contributing characters like number of effective tillers per metre row length, spike length, and number of grains per spike. The increase of nitrogen level from 40 kg/ha to 80 kg/ha also brought a significant increase in yield and yield contributing characters. The application of entire dose of nitrogen at the time of sowing was as good as its split application. The application of nitrogen also influenced the nitrogen concentration of grains whereas, the other treatments did not influence the nitrogen concentration in grains or straw. The nitrogen treatments did not influence the moisture content of soil. The application of mulch or mulch+Kaolin resulted in significantly higher content of soil moisture in 0–15 cm soil depth as compared to control or Kaolin spray alone which was simultaneously reflected in yield and yield contributing characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号