首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The yield of N in maize (Zea mays L.) and ricebean (Vigna umbellata [Thumb.] Ohwi and Ohashi) were compared on a Tropoqualf soil in North Thailand in 1984 and 1985. Both species were grown in field plots in monoculture or as intercrops at a constant planting density equivalent to 8 maize or 16 ricebean plants per m2. The contribution of symbiotic N2 fixation to ricebean growth was estimated from measurements of the natural abundance of15N (δ15N) in shoot nitrogen and from analysis of ureides in xylem sap vacuumextracted from detached stems. The natural abundance of15N in the intercropped ricebean was found to be considerably less than that in monoculture in both growing seasons. Using maize and a weed (Ageratum conyzoides L.) as non-fixing15N reference plants the proportions (P 15N) of ricebean shoot N derived from N2 fixation ranged from 0.27 to 0.36 in monoculture ricebean up to 0.86 when grown in a 75% maize: 25% ricebean intercrop. When glasshouse-derived calibration curves were used to calculate plant proportional N2 fixation (Pur) from the relative ureide contents of field collected xylem exudates, the contribution of N2 fixation to ricebean N yields throughout the 1985 growing season were greater in intercrop than in monocrop even at the lowest maize:legume ratio (25∶75). Seasonal patterns of sap ureide abundance indicated that N2 fixation was greatest at the time of ricebean podset. The averagePur andP 15N in ricebean during the first 90 days of growth showed identical rankings of monocrop and intercrop treatments in terms of N2 fixation, although the two sets ofP values were different. Nonetheless, seasonal estimates of N2 fixation during the entire 147 days of legume growth determined from ureide analyses indicated that equivalent amounts of N could be fixed by ricebean in a 75∶25 intercrop and in monoculture despite the former being planted at one-quarter the density.  相似文献   

2.
Intercropping cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp) is one of the ways to improve food security and soil fertility whilst generating cash income of the rural poor. A study was carried out to find out the effect of cotton–cowpea intercropping on cowpea N2-fixation capacity, nitrogen balance and yield of a subsequent maize crop. Results showed that cowpea suppressed cotton yields but the reduction in yield was compensated for by cowpea grain yield. Cowpea grain yield was significantly different across treatments and the yields were as follows: sole cowpea (1.6 Mg ha−1), 1:1 intercrop (1.1 Mg ha−1), and 2:1 intercrop (0.7 Mg ha−1). Cotton lint yield was also significantly different across treatments and was sole cotton (2.5 Mg ha−1), 1:1 intercrop (0.9 Mg ha−1) and 2:1 intercrop (1.5 Mg ha−1). Intercropping cotton and cowpea increased the productivity with land equivalence ratios (LER) of 1.4 and 1.3 for 1:1 and 2:1 intercrop treatments, respectively. There was an increase in percentage of N fixation (%Ndfa) by cowpea in intercrops as compared to sole crops though the absolute amount fixed (Ndfa) was lower due to reduced plant population. Sole cowpea had %Ndfa of 73%, 1:1 intercrop had 85% and 2:1 intercrop had 77% while Ndfa was 138 kg ha−1 for sole cowpea, 128 kg ha−1 for 1:1 intercrop and 68 kg ha−1 for 2:1 intercrop and these were significantly different. Sole cowpea and the intercrops all showed positive N balances of 92 kg ha−1 for sole cowpea and 1:1 intercrop, and 48 kg ha−1 for 2:1 intercrop. Cowpea fixed N transferred to the companion cotton crop was very low with 1:1 intercrop recording 3.5 kg N ha−1 and 2:1 intercrop recording 0.5 kg N ha−1. Crop residues from intercrops and sole cowpea increased maize yields more than residues from sole cotton. Maize grain yield was, after sole cotton (1.4 Mg ha−1), sole cowpea (4.6 Mg ha−1), 1:1 intercrops (4.4 Mg ha−1) and 2:1 intercrops (3.9 Mg ha−1) and these were significantly different from each other. The LER, crop yields, %N fixation and, N balance and residual fertility showed that cotton–cowpea intercropping could be a potentially productive system that can easily fit into the current smallholder farming systems under rain-fed conditions. The fertilizer equivalency values show that substantial benefits do accrue and effort should be directed at maximizing the dry matter yield of the legume in the intercrop system while maintaining or improving the economic yield of the companion cash crop.  相似文献   

3.
Intercropping enhances soil carbon and nitrogen   总被引:14,自引:0,他引:14       下载免费PDF全文
Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha?1 yr?1. Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha?1 yr?1. Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ15N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.  相似文献   

4.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

5.
Nitrogen economy in relay intercropping systems of wheat and cotton   总被引:3,自引:0,他引:3  
Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are applied. In this study, we analyzed the N-economy of the monocultures of cotton and wheat, and of four relay intercropping systems, differing in number of rows per strip of cotton or wheat. Field experiments were carried out from 2001/02 to 2003/04 in the Yellow River region in China. We quantified the nitrogen uptake and nitrogen use efficiency of wheat and cotton in relay intercropping systems to test if intercrops are more resource use efficient in comparison to monocrops. Nitrogen (N) yields of wheat per unit area in the four intercropping systems were lower than in the monocrop, which ranged from 203 to 288 kg ha−1. The total N-uptake per unit biomass was similar between wheat in mono- and intercrops. On average, the N-yield of cotton per unit area was lower in intercrops than in monocrops, which ranged from 110 to 127 kg ha−1, but the total N-uptake per unit biomass was higher in intercropped cotton, as dry matter production was reduced to a greater extent by intercropping than N-uptake. The N-uptake of cotton was diminished during the intercropping phase, but recovered partially during later growth stages. The physiological nitrogen use efficiency (IE) of wheat was not much affected by intercropping, but it was reduced in cotton, due to delayed flowering and less reproductive growth. Total N-efficiency of the system was assessed by comparing the relative nitrogen yield total (RNT), i.e. the sum of the ratio’s of total N-uptake by a component crop in the intercrop relative to the N-uptake in the monocrop, to the relative yield total. RNT ranged from 1.4 to 1.7, while the relative yield total (RYT) ranged from 1.3 to 1.4, indicating that intercrops used more nitrogen per unit production than monocrops. An analysis of the crop nitrogen balance showed that the nitrogen surplus of sole crops amounted to 220 kg ha−1 for wheat and 140 kg ha−1 for cotton, while in the intercropping systems, the annual N surplus exceeded 400 kg ha−1. Conventional N-management in intercrops thus results in high N-surpluses that pose an environmental risk. The N management could be improved by means of a demand-based rate and timing of N applications.  相似文献   

6.
Maize (Zea mays L.) is a major staple food in Sub-Saharan Africa but low soil fertility, limited resources and droughts keep yields low. Cultivation of maize intercropped with pigeonpea (Cajanus cajan L. Millsp.) is common in some areas of eastern and southern Africa. The objectives of this study were (1) to investigate dry matter, nitrogen (N) and phosphorus (P) accumulation in different plant components of maize–pigeonpea intercropping systems and (2) to report the effects of the intercrops on soil fertility. Maize–pigeonpea intercrops were compared to sole maize grown using farmersȁ9 practices. Intercropping maize and pigeonpea increased (P < 0.05) total system yield compared to sole maize in terms of biomass, N and P accumulation. Pigeonpea planted in maize did not reduce (P < 0.05) the accumulation of dry matter, N nor P in the maize grain. The harvest indices of maize, calculated on basis dry matter, N or P did not differ either (P < 0.05). Total soil C and N contents and inorganic N content, nitrate and ammonium, were not affected by two seasons of maize–pigeonpea intercropping compared to sole maize (P > 0.11). Nitrate and ammonium levels in soil were still not affected by the treatments after the soils were incubated in anaerobic conditions for 8 days at 37°C (P > 0.11). However, pigeonpea added up to 60 kg of N ha−1 to the system and accumulated up to 6 kg of P ha−1 and only 25% of this N and P were exported in the grain. In conclusion, beside the added grain yield of pigeonpea in the intercropped systems, pigeonpea increased the recirculation of dry matter, N and P, which may have a long-term effect on soil fertility. Furthermore, the stems from pigeonpea contributed to household fuel wood consumption. The intercropped system thus had multiple benefits that gave significant increase in combined yield per unit area without additional labour requirements. The main requirement in order to up-scale the maize–pigeonpea intercropping approach is sufficient supply of high-quality pigeonpea seeds.  相似文献   

7.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

8.
Prunings of Calliandra calothyrsus, Grevillea robusta, Leucaena diversifolia and farm yard manure were applied each cropping season at 3 and 6 t dry matter ha−1 to an Oxisol in Burundi. The field plots also received basal applications of nitrogen (N), phosphorus (P) and potassium (K). Application of the tree prunings or farm yard manure decreased the concentration of monomeric inorganic aluminium (Al) in soil solution from 2.92 mg Al dm−3 in the control plots to 0.75 mg Al dm−3 in the plots receiving 6 t ha−1 Calliandra prunings. The other organic materials also decreased the concentration of monomeric inorganic aluminium in the soil solution. The lowered Al concentration led to a corresponding decrease in the percentage Al saturation of the 0–10 cm soil layer from 80% to 68%. Grain yields of maize and beans were strongly inversely related to the percentage Al saturation of the soil. This confirms that soil acidity was the main constraint to maize and beans production. The yield improvement was mainly attributed to the ameliorating effects of the organic matter application on Al toxicity. The nutrient content had less effect presumably because of fertilizer use. In the best treatments, the yield of maize increased from 0.9 to 2.2 t ha−1 and the corresponding beans yield increased from 0.2 to 1.2 t ha−1. A C Borstlap Section editor  相似文献   

9.
Field experiments were carried out during three successive years to study through a dynamic approach the competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. The intensity of competition for soil N varied between experiments according to soil N supply and plant densities. This study demonstrates the key role of competition for soil N which occurs early in the crop cycle and greatly influences the subsequent growth and final performance of both species. Relative yield values for grain yield and N accumulation increased with the intensity of competition for soil N. Barley competed strongly for soil N in the intercrop. Its competitive ability increased steadily during the vegetative phase and remained constant after the beginning of pea flowering. The period of strong competition for soil N (500–800 degree-days after sowing) also corresponded to the period of rapid growth in leaf area for both species and therefore an increasing N demand. For each species, the leaf area per plant at the beginning of pea flowering was well correlated with crop nitrogen status. Barley may meet its N needs more easily in intercrops (IC) and has greater leaf area per plant than in sole crops (SC). Barley having a greater soil N supply results in an even higher crop N status and greater competitive ability relative to pea in intercrop. Competition by barley for soil N increased the proportion of pea N derived from fixation. The nitrogen nutrition index (NNI) values of pea were close to 1 whatever the soil N availability in contrast to barley. However N2 fixation started later than soil N uptake of pea and barley and was low when barley was very competitive for soil N. Due to the time necessary for the progressive development and activity of nodules, N2 fixation could not completely satisfy N demand at the beginning of the crop cycle. The amount of N2 fixed per plant in intercrops was not only a response to soil N availability but was largely determined by pea growth and was greatly affected when barley was too competitive.  相似文献   

10.
Although wheat (Triticum aestivum L.) is the dominant crop of the semi-arid plains of Canada and the western United States, lentil (Lens culinaris Medik.) has become an important alternative crop. Sources and seasonal accumulation of N must be understood in order to identify parameters that can lead to increased N2-fixing activity and yield. Inoculated lentil was grown in a sandy-loam soil at an irrigated site in Saskatchewan, Canada. Wheat was used as the reference crop to estimate N2 fixation by the A-value approach. Lentil and wheat received 10 and 100 kg N ha−1 of ammonium nitrate, respectively. Crops were harvested six times during the growing season and plant components analyzed. During the first 71 days after planting the wheat had a higher daily dry matter and N accumulation compared to lentil. However, during the latter part of the growing season, daily dry matter and N accumulation were greater for lentil. The maximum total N accumulation for lentil at maturity was 149 kg ha−1. In contrast, wheat had a maximum N accumulation of 98 kg ha−1 in the Feekes 11.1 stage, or 86 days after planting. The maximum daily rates of N accumulation were 3.82 kg N ha−1 day−1 for lentil and 2.21 kg N ha−1 day−1 for wheat. The percentage of N derived from N2 fixation (% Ndfa) ranged from 0 at the first harvest to 92 % at final harvest. Generative plant components had higher values for % Ndfa than the vegetative components which indicates that N in the reproductive plant parts was derived largely from current N2 fixation and lentil continued to fix N until the end of the pod fill stage. At final harvest, lentil had derived 129 kg N ha−1 from N2 fixation with maximum N2-fixing activity (4.4 kg N ha−1 day−1) occurring during the early stages of pod fill. Higher maximum rates of N2-fixing activity than net N accumulation (3.82 kg N ha−1 day−1) may have been caused by N losses like volatilization. In addition, lentil provided a net N contribution to the soil of 59 kg ha−1 following the removal of the grain.  相似文献   

11.
There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements. Section Editor: L. Wade  相似文献   

12.
玉米-大豆间作和施氮对玉米产量及农艺性状的影响   总被引:9,自引:0,他引:9  
为研究玉米-大豆间作模式和施氮水平对玉米产量、主要农艺性状及生长动态的影响,进行2个种植模式(玉米单作和玉米-大豆间作)和2个施氮水平(0 kg/hm2,150 kg/hm2)的双因素随机区组试验,以期揭示施氮和间作对玉米产量的影响规律,为提高玉米-大豆间作系统产量提供一定的理论依据。研究结果表明:(1)与不施氮相比,施氮显著增加了春秋两季间作玉米产量,分别达到23.81%和40.99%。施氮处理下的间作玉米地上部生物量较不施氮提高了29.91%,单作模式下显著提高了40.34%,两者差异均达到显著水平。(2)与不施氮相比,施氮150 kg/hm2条件下春玉米单作和间作模式百粒重分别提高了18.92%和19.23%,秋玉米单作和间作模式百粒重分别提高了31.03%和32.75%,差异均达到显著水平。与不施氮相比,施氮150 kg/hm2条件下,单作和间作模式均显著提高秋玉米穗长。与不施氮相比,施氮150 kg/hm2条件下,单作秋玉米的穗粗提高了18.67%,差异显著。(3)施氮和间作均能促进玉米干物质累积、提高株高和叶绿素(SPAD值),且表现为施氮效果高于间作效果。总体来看,种植模式和施氮水平对玉米产量、主要农艺性状和生长动态均有一定影响,且施氮效果优于间作效果。由于土壤具有一定的供氮能力,而间作豆科能为玉米供给一定量的氮素,故对于春玉米而言,施氮效果仅在百粒重中表现,随着土壤原有氮素被玉米吸收利用减少后,供氮能力下降,在秋玉米中施氮效果显著提高。  相似文献   

13.
The present study was conducted to investigate the effects of nitrogen derived from dried or carbonized chicken manure on growth, nodulation, yield and N content of soybean. 15N labeled chicken manure used in this study was obtained from the droppings of chicken fed on hulled rice grown under field conditions and fertilized with 15N-labeled stable isotope ammonium sulphate and potassium nitrate fertilizers. Carbonized chicken manure was made by heat treatment in a muffle furnace in our laboratory. This study was conducted in pots filled with clay loam soil. Results from the study show that the application of carbonized chicken manure increased soybean seed yield by 23% and 43% for the 50 and 100 kg N ha−1 rates respectively. Dried chicken manure application increased soybean seed yield by 7% and 30% for the 50 and 100 kg N ha−1 rates respectively. There was no difference in the N manure yield of both manures when applied at the same rate. The percentage 15N recovery was 17.6% and 8.9% for carbonized chicken manure, 19.2% and 10.5% for dried chicken manure at 50 and 100 kg N ha−1 rates respectively at peak flowering stage of soybean growth. We found high total nitrogen yields of soybean at the rate of 100 kg N ha−1 for both manures. There was a positive relationship between number of nodules and seed yield of soybean. Total N content also showed positive relationship with number of nodules and seed yield of soybean. We supposed that the higher P content of carbonized chicken manure is responsible for the higher seed yield and nodule growth compared to dried chicken manure.  相似文献   

14.
Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials.  相似文献   

15.
Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.  相似文献   

16.
Source of the soybean N credit in maize production   总被引:2,自引:0,他引:2  
Gentry  L.E.  Below  F.E.  David  M.B.  Bergerou  J.A. 《Plant and Soil》2001,236(2):175-184
Nitrogen response trials throughout the United States Corn Belt show that economic optimum rates of N fertilization are usually less for maize (Zea mays L.) following soybean (Glycine max L.) than for maize following maize; however, the cause of this rotation effect is not fully understood. The objective of this study was to investigate the source of the apparent N contribution from soybean to maize (soybean N credit) by comparing soil N mineralization rates in field plots of unfertilized maize that had either nodulated soybean, non-nodulated soybean, or maize as the previous crop. Crop yields, plant N accumulation, soil inorganic N, and net soil mineralization were measured. Both grain yield (6.3 vs. 2.8 Mg ha–1) and above-ground N accumulation (97 vs. 71 kg ha–1) were greatly increased when maize followed nodulated soybean compared with maize following maize. A partial benefit to yield and N accumulation was also observed for maize following non-nodulated soybean. Cumulative net soil N mineralization following nodulated soybean, non-nodulated soybean, and maize was 112, 92 and 79 kg N ha–1, respectively. Net mineralization of soil N appeared to be influenced by both quality (C:N ratio) and quantity of residue from the previous crop. In addition to an increase in plant available N from mineralization, the amount of soil inorganic N (especially in soil 5 cm from the row) was greater following nodulated soybean than non-nodulated soybean or maize. Based on these data, the soybean N credit appears to result from a combination of a decrease in net soil mineralization in continuous maize production and an increase in residual soil N from symbiotic fixation.  相似文献   

17.
Nitrogen release patterns from decomposing shoot residues of Tephrosia candida, Crotalaria grahamiana, Mucuna pruriens, Macrotyloma axillare, Macroptillium atropurpureum and Desmodium intortum were studied in the laboratory for a period of 22 weeks in a sandy clay soil and 10 weeks in a clay soil using a leaching tube technique. The residual effect of soil incorporated shoot residues of T. candida, T. vogelii, C. grahamiana, M. pruriens and C. juncea on maize yield was evaluated at four sites each in the high rainfall zone (mean precipitation 2100 mm year−1) and low rainfall zone (mean precipitation 800 mm year−1) of Bukoba District, Tanzania. N mineralised from the legume residues ranged from 24 to 61% of the initial N after 22 weeks in a sandy clay soil and −1 to 34% after 10 weeks in a clay soil. The N mineralisation rates of the residues decreased in both soils in the order M. atropurpureum>M. axillare>C. grahamiana>D. intortum>T.␣candida>M. pruriens and were mostly strongly related to (polyphenols+lignin)-to-N ratio, lignin-to-N ratio and lignin. Relative to the control, legume residues resulted in two and threefold increase in maize grain yield i.e. from 1.1 to 3.2 Mg ha−1 and from 1.4 to 3.8 Mg ha−1 in a high and low rainfall zone respectively. However, maize yield response to legume residues was limited when compared with application of 50 kg N ha−1 of mineral fertiliser. The % fertiliser equivalency (%FE) of legumes ranged between 25 and 59% with higher values recorded with C. grahamiana. At harvest, apparent N recoveries in maize ranged between 23 and 73% of the N applied in the legume residues. Highest recovery was found with application of C. grahamiana and least recovery from T. candida residues. These results suggested that application of legume residues alone might not be sufficient to meet N requirements and to achieve the yield potential of maize crop in Bukoba soils unless supplemented with small doses of mineral fertilisers.  相似文献   

18.
Sustainable management of cabbage aphids, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is a major goal for collard, Brassica oleracea (L.) var. acephala (Brassicaceae), growers globally. Host finding ability of insect pests is significantly affected by diversified cropping systems, and this approach is being utilized currently as a pest management tool. Soil nutrition and its interaction with the cropping systems could have a significant effect on the general performance of collards and the infestation by cabbage aphids. In a search for a sustainable cabbage aphid control, a two‐season field experiment was carried out with two intercrops, collards and chilli, Capsicum frutescens (L.) (Solanaceae), and collards and spring onions, Allium cepa (L.) (Alliaceae), and a collard monoculture. For each of the cropping systems, nitrogen (N) was applied to the soil as a top‐dress at 20, 25, 30, and 35 g per collard plant. The response factors monitored were collard yield (fresh weight) and aphid infestation on collards. Spring onion‐collard intercrop had the lowest aphid density and the highest yield. Collard monoculture had the highest aphid infestation and the lowest yield. High levels of N led to increased infestation of collards by aphids, but also led to a significant increase in the yield of collards. Significant interactions between the N rates and the cropping systems were observed on some sampling dates, with the highest yield being realized under a combination of spring onion‐collard intercrop at a N rate of 30 g per plant. High aphid density led to a decrease in the yield of collards. It was concluded that with a spring onion‐collard intercrop, the soil N level could be raised from the blanket rate of 20–30 g per plant and this would lead to an increase in yield.  相似文献   

19.
Plénet  Daniel  Lemaire  Gilles 《Plant and Soil》1999,216(1-2):65-82
The concept of critical nitrogen concentration(%N c) has been proposed as the minimum%N in shoots required to produce the maximum aerial biomassat a given time. Several authors have shown that%N c declines as a function of aerial biomassaccumulation (W) and the %N cW relationship has been proposed as a diagnostic tool of N statusin different crops, excluding maize. From data obtained in five nitrogenfertilisation experiments in irrigated maize crops, 26 critical data-pointswere selected with a precise statistical procedure. An allometric relationwas fitted and a critical %NW relationshipmodel is proposed in maize as: If W < 1 t ha-1%N c = 3.40 If 1 t ha-1W ≤ 22 t ha-1%N c = 3.40(W)−0.37 The model is applicable to maize crop development between emergenceand silking + 25 days. The model was tested and validated with dataobtained in a network of 17 N fertilisation experiments conducted inFrance under contrasting pedoclimatic conditions. In only nineout of 280 data-points (3.2%), the plant N status was mispredictedwhen ±5% error around %N c wasallowed. A critical N uptake model (Nuc, kg Nha-1) is proposed as Nuc = 34 (W)0.63 A comparison between Nuc and N uptake observedin N treatments giving the maximal grain yields has shown that maizecrops assimilate at least 30 kg N ha-1 in a storage N poolat the silking stage. The significance of the critical%NW and Nu−W relationships is discussed in relation to theoretical models proposed inwhole plant ecophysiology. Different relationships calculated betweenleaf area index and aerial biomass accumulation, and between N uptakeand leaf area were consistent with previous results for other crops.This strengthens the interest of the critical%NW relationship for use as diagnostictool of nitrogen status in maize crops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In the Cerrado region of Brazil conventional soybean monoculture is since the 1980s being replaced by direct seeding mulch-based cropping (DMC) with two crops per year and absence of tillage practices. The objective of this study was to assess the long-term impact of DMC on soil organic matter accumulation and nitrogen (N) mineralization. Measurements of soil organic carbon (C) content, soil total N content and soil N mineralization, both under laboratory conditions using disturbed soil samples and under field conditions using intact soil cores were conducted on a chronosequence of 2-, 6-, 9- and 14-year-old DMC fields (DMC-2, DMC-6, DMC-9 and DMC-14, respectively). The average increase of organic C in the 0–30 cm topsoil layer under DMC was 1.91 Mg C ha−1 year−1. Soil total N increased with 103 kg N ha−1 year−1 (0–30 cm). The potential N mineralization rate under laboratory conditions (28°C, 75% of soil moisture at field capacity) was 0.27, 0.28, 0.39 and 0.36 mg N kg soil−1 day−1 for, respectively, the DMC-2, DMC-6, DMC-9 and DMC-14 soils. The corresponding specific N mineralization rates were 0.16, 0.15, 0.22 and 0.17 mg N g N−1 day−1. There was no obvious explanation for the higher specific N mineralization rate of soils under DMC-9, given the similar soil conditions and land-use history before DMC was introduced. Results from the in situ N incubation experiments were in good agreement with those from the laboratory incubations. We estimated that soil N mineralization increases with about 2.0 kg N ha−1 year−1 under DMC. The increase was mainly attributed to the larger soil total N content. These results indicate that even in the medium term (10 years), continuous DMC cropping has limited implications for N fertilization recommendations, since the extra soil N supply represents less than 20% of the common N fertilization dose for maize in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号