首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
In macrophages, two signaling pathways, dependent on MyD88 or TIR domain-containing adaptor-inducing IFN-β (TRIF) signaling, emanate from the LPS receptor TLR4/MD-2. In this study, we show that in murine bone marrow-derived mast cells (BMMCs), only the MyD88-dependent pathway is activated by LPS. The TRIF signaling branch leading both to NF-κB activation and enhanced proinflammatory cytokine production, as well as to IRF3 activation and subsequent IFN-β production, is absent in LPS-stimulated BMMCs. IRF3 activation is also absent in peritoneal mast cells from LPS-injected mice. We observed strongly diminished TRAM expression in BMMCs, but overexpression of TRAM only moderately enhanced IL-6 and did not boost IFN-β responses to LPS in these cells. A combination of very low levels of TRAM and TLR4/MD-2 with the known absence of membrane-bound CD14 are expected to contribute to the defective TRIF signaling in mast cells. We also show that, unlike in macrophages, in BMMCs the TRIF-dependent and -independent IFN-αβ responses to other recognized IFN inducers (dsRNA, adenovirus, and B-DNA) are absent. These results show how the response to the same microbial ligand using the same receptor can be regulated in different cell types of the innate immune system.  相似文献   

6.
7.
8.
9.
Asp(299)Gly (D299G) and, to a lesser extent, Thr(399)Ile (T399I) TLR4 polymorphisms have been associated with gram-negative sepsis and other infectious diseases, but the mechanisms by which they affect TLR4 signaling are unclear. In this study, we determined the impact of the D299G and T399I polymorphisms on TLR4 expression, interactions with myeloid differentiation factor 2 (MD2), LPS binding, and LPS-mediated activation of the MyD88- and Toll/IL-1R resistance domain-containing adapter inducing IFN-β (TRIF) signaling pathways. Complementation of human embryonic kidney 293/CD14/MD2 transfectants with wild-type (WT) or mutant yellow fluorescent protein-tagged TLR4 variants revealed comparable total TLR4 expression, TLR4-MD2 interactions, and LPS binding. FACS analyses with anti-TLR4 Ab showed only minimal changes in the cell-surface levels of the D299G TLR4. Cells transfected with D299G TLR4 exhibited impaired LPS-induced phosphorylation of p38 and TANK-binding kinase 1, activation of NF-κB and IFN regulatory factor 3, and induction of IL-8 and IFN-β mRNA, whereas T399I TLR4 did not cause statistically significant inhibition. In contrast to WT TLR4, expression of the D299G mutants in TLR4(-/-) mouse macrophages failed to elicit LPS-mediated induction of TNF-α and IFN-β mRNA. Coimmunoprecipitation revealed diminished LPS-driven interaction of MyD88 and TRIF with the D299G TLR4 species, in contrast to robust adapter recruitment exhibited by WT TLR4. Thus, the D299G polymorphism compromises recruitment of MyD88 and TRIF to TLR4 without affecting TLR4 expression, TLR4-MD2 interaction, or LPS binding, suggesting that it interferes with TLR4 dimerization and assembly of intracellular docking platforms for adapter recruitment.  相似文献   

10.
11.
The effect of a series of toll-like receptor (TLR) ligands on the production of nitric oxide (NO) in mouse B1 cells was examined by using CD5+ IgM+ WEHI 231 cells. The stimulation with a series of TLR ligands, which were Pam3Csk4 for TLR1/2, poly I:C for TLR3, lipopolysaccharide (LPS) for TLR4, imiquimod for TLR7 and CpG DNA for TLR9, resulted in enhanced NO production via augmented expression of an inducible type of NO synthase (iNOS). LPS was most potent for the enhancement of NO production, followed by poly I:C and Pam3Csk4. Imiquimod and CpG DNA led to slight NO production. The LPS-induced NO production was dependent on MyD88-dependent pathway consisting of nuclear factor (NF)-κB and a series of mitogen-activated protein kinases (MAPKs). Further, it was also dependent on the MyD88-independent pathway consisting of toll-IL-1R domain-containing adaptor-inducing IFN-β (TRIF) and interferon regulatory factor (IRF)-3. Physiologic peritoneal B1 cells also produced NO via the iNOS expression in response to LPS. The immunological significance of TLR ligands-induced NO production in B1 cells is discussed.  相似文献   

12.
13.
The adaptor molecule MyD88 is necessary for responses to all Toll-like receptors except TLR3 and a subset of TLR4 signaling events, which are mediated by the adaptor molecule TRIF. To determine the role of TRIF in host inflammatory responses, corneal epithelium of C57BL/6, TLR3(-/-), TRIF(-/-), and MyD88(-/-) mice was abraded and stimulated with the synthetic TLR3 ligand poly(I:C). We found that poly(I:C) induced a pronounced cellular infiltration into the corneal stroma, which was TLR3- and TRIF-dependent. Unexpectedly, the inflammatory response was exacerbated in MyD88(-/-) mice, with enhanced neutrophil and F4/80(+) cell infiltration into the corneal stroma and elevated corneal haze, which is an indicator of loss of corneal transparency. To determine whether MyD88-dependent inhibition of TLR3/TRIF responses is a general phenomenon, we examined cytokine production by MyD88(-/-) bone marrow-derived macrophages; however, no significant difference was observed between MyD88(+/+) or MyD88(-/-) macrophages. In contrast, human corneal epithelial cells (HCECs) transfected with MyD88 small interfering RNA had significantly increased (2.5-fold) CCL5/RANTES production compared with control HCECs, demonstrating a negative regulatory role for MyD88 in TLR3/TRIF responses in these cells. Finally, knockdown of MyD88 in HCECs resulted in increased phosphorylation of c-Jun N-terminal kinase (JNK), but not p38, IRF-3, or NF-kappaB. Consistent with this finding, the JNK inhibitor SP600125, but not p38 inhibitor SB203580, ablated this response. Taken together, these findings demonstrate a novel JNK-dependent inhibitory role for MyD88 in the TLR3/TRIF activation pathway.  相似文献   

14.
15.
TLRs can activate two distinct branches of downstream signaling pathways. MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF) pathways lead to the expression of proinflammatory cytokines and type I IFN genes, respectively. Numerous reports have demonstrated that resveratrol, a phytoalexin with anti-inflammatory effects, inhibits NF-kappaB activation and other downstream signaling pathways leading to the suppression of target gene expression. However, the direct targets of resveratrol have not been identified. In this study, we attempted to identify the molecular target for resveratrol in TLR-mediated signaling pathways. Resveratrol suppressed NF-kappaB activation and cyclooxygenase-2 expression in RAW264.7 cells following TLR3 and TLR4 stimulation, but not TLR2 or TLR9. Further, resveratrol inhibited NF-kappaB activation induced by TRIF, but not by MyD88. The activation of IFN regulatory factor 3 and the expression of IFN-beta induced by LPS, poly(I:C), or TRIF were also suppressed by resveratrol. The suppressive effect of resveratrol on LPS-induced NF-kappaB activation was abolished in TRIF-deficient mouse embryonic fibroblasts, whereas LPS-induced degradation of IkappaBalpha and expression of cyclooxygenase-2 and inducible NO synthase were still inhibited in MyD88-deficient macrophages. Furthermore, resveratrol inhibited the kinase activity of TANK-binding kinase 1 and the NF-kappaB activation induced by RIP1 in RAW264.7 cells. Together, these results demonstrate that resveratrol specifically inhibits TRIF signaling in the TLR3 and TLR4 pathway by targeting TANK-binding kinase 1 and RIP1 in TRIF complex. The results raise the possibility that certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression and can alter susceptibility to microbial infection and chronic inflammatory diseases.  相似文献   

16.
Resveratrol was suggested to inhibit Toll-like receptor (TLR)4-mediated activation of nuclear factor-κB (NF-κB) and Toll/interleukin-1 receptor domain-containing adaptor inducing interferon-β (TRIF)–(TANK)-binding kinase 1, but the myeloid differentiation primary response gene 88–tumor necrosis factor receptor-associated factor 6 (TRAF6) pathway is not involved in this effect. However, involvement of TRAF6 in this process is still elusive since cross talk between TRIF and TRAF6 has been reported in lipopolysaccharide (LPS)-induced signaling. Using RAW 264.7 macrophages, we determined the effect of resveratrol on LPS-induced TRAF6 expression, ubiquitination as well as activation of mitogen-activated protein (MAP) kinases and Akt in order to elucidate its involvement in TLR4 signaling. LPS-induced transient elevation in TRAF6 mRNA and protein expressions is suppressed by resveratrol. LPS induces the ubiquitination of TRAF6, which has been reported to be essential for Akt activation and for transforming growth factor-β activated kinase-1–NAP kinase kinase 6 (MKK6)-mediated p38 and c-Jun N-terminal kinase (JNK) activation. We found that resveratrol diminishes the effect of LPS on TRAF6 ubiquitination and activation of JNK and p38 MAP kinases, while it has no effect on the activation of extracellular-signal-regulated kinase (ERK)1/2. The effect of resveratrol on MAP kinase inhibition is significant since TRAF6 activation was reported to induce activation of JNK and p38 MAP kinase while not affecting ERK1/2. Moreover, Akt was identified previously as a direct target of TRAF6, and we found that, similarly to MAPKs, phosphorylation pattern of Akt followed the activation of TRAF6, and it was inhibited by resveratrol at all time points. Here, we provide the first evidence that resveratrol, by suppressing LPS-induced TRAF6 expression and ubiquitination, attenuates the LPS-induced TLR4–TRAF6, MAP kinase and Akt pathways that can be significant in its anti-inflammatory effects.  相似文献   

17.
Lei X  Sun Z  Liu X  Jin Q  He B  Wang J 《Journal of virology》2011,85(17):8811-8818
Enterovirus 71 (EV71) causes hand-foot-and-mouth disease and neurological complications in young children. Although the underlying mechanisms remain obscure, impaired or aberrant immunity is thought to play a role. In infected cells, EV71 suppresses type I interferon responses mediated by retinoid acid-inducible gene I (RIG-I). This involves the EV71 3C protein, which disrupts the formation of a functional RIG-I complex. In the present study, we report that EV71 inhibits the induction of innate immunity by Toll-like receptor 3 (TLR3) via a distinct mechanism. In HeLa cells stimulated with poly(I · C), EV71 inactivates interferon regulatory factor 3 and drastically suppresses interferon-stimulated gene expression. Notably, EV71 specifically downregulates a TRIF, TIR domain-containing adaptor inducing beta interferon (IFN-β). When expressed alone in mammalian cells, EV71 3C is capable of exhibiting these activities. EV71 3C associates with and induces TRIF cleavage in the presence of Z-VAD-FMK, a caspase inhibitor. TRIF cleavage depends on its amino acid pair Q312-S313, which resembles a proteolytic site of picornavirus 3C proteases. Further, site-specific 3C mutants with a defective protease activity bind TRIF but fail to mediate TRIF cleavage. Consequently, these 3C mutants are unable to inhibit NF-κB and IFN-β promoter activation. TRIF cleavage mediated by EV71 may be a mechanism to impair type I IFN production in response to Toll-like receptor 3 (TLR3) activation.  相似文献   

18.
Secondary bacterial infection is a common sequela to?viral infection and is associated with increased lethality and morbidity. However, the underlying mechanisms remain poorly understood. We show that the TLR3/MDA5 agonist poly I:C or viral infection dramatically augments signaling via the NLRs Nod1 and Nod2 and enhances the production of proinflammatory cytokines. Enhanced Nod1 and Nod2 signaling by poly I:C required the TLR3/MDA5 adaptors TRIF and IPS-1 and was mediated by type I IFNs. Mechanistically, poly I:C or IFN-β induced the expression of Nod1, Nod2, and the Nod-signaling adaptor Rip2. Systemic administration of poly I:C or IFN-β or infection with murine norovirus-1 promoted inflammation and lethality in mice superinfected with E.?coli, which was independent of bacterial burden but attenuated in the absence of Nod1/Nod2 or Rip2. Thus, crosstalk between type I IFNs and Nod1/Nod2 signaling promotes bacterial recognition, but induces harmful effects in the virally infected host.  相似文献   

19.
TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF’s role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-κB and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-κB activity and phosphorylation of the inhibitor of kappa B (IκBα) increased in ischemic brains, but IRF3, inhibitor of κB kinase complex-ε (IKKε), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-κB activity or p-IκBα induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-κB signaling and brain injury after acute cerebral I/R.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号