首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
3.
4.
5.
6.
7.
To study 3D nuclear distributions of epigenetic histone modifications such as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) trimethylation, and of histone methyltransferase Suv39H1, we used advanced image analysis methods, combined with Nipkow disk confocal microscopy. Total fluorescence intensity and distributions of fluorescently labelled proteins were analyzed in formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while di-meH3(K9) was also abundant in chromatin regions closely associated with the nuclear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone modifications studied were absent in the nucleolar compartment with the exception of H3(K9) dimethylation that was closely associated with perinucleolar regions which are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry, no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric chromosomes 14 and 22. The active X chromosome was observed to be partially acetylated, while the inactive X was more condensed, located in a very peripheral part of the interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific interphase patterns of histone modifications within the interphase nuclei as well as within their chromosome territories.  相似文献   

8.
The centromeric region of Costus spiralis is characteristically composed of a small heterochromatic DAPI(+) band flanked by a discrete decondensed region. High concentrations of serine 10 of histone H3 (H3S10ph) around the DAPI(+) band in pachytene chromosomes and the location of this heterochromatin at the chromosome region directed towards the poles during metaphase-anaphase I confirm its integration into the centromeric region. Antibodies against both typical components of euchromatin histones (histone H4 acetylated at lysine 5 (H4K5ac) and histone H3 dimethylated at lysine 4 (H3K4me2)) and heterochromatin (dimethylated lysine 9 of H3 (H3K9me2) and anti-5-methylcytosine (5-mC)) were used to characterize the centromeric chromatin of this species during meiosis. In pachytene chromosomes, the decondensed terminal euchromatin of the chromosome arms were seen to be richer in H4K5ac and H3K4me2 histones, while the more condensed proximal region was relatively stronger labeled with anti-H3K9me2 and anti-5-methylcytosine (5-mC). The centromeric region itself, including the DAPI(+) band, was poor in all of these chromatin modifications, but it was highly enriched in H4K5ac at pachytene. Before and after this stage, the centromeric region was poorly labeled with anti-H4K5ac. Hypomethylation and hyperacetylation of any kind of heterochromatin has rarely been reported, and it may be related to the dominant role of the centromere domain over the heterochromatin repeats.  相似文献   

9.
10.
Interphasic chromatin condenses into the chromosomes in order to facilitate the correct segregation of genetic information. It has been previously reported that the phosphorylation and methylation of the N-terminal tail of histone H3 are responsible for chromosome condensation. In this study, we demonstrate that the deacetylation and methylation of histone H3 lysine 9 (H3K9) are required for proper chromosome condensation. We confirmed that H3K9ac levels were reduced, whereas H3K9me3 levels were increased in mitotic cells, via immunofluorescence and Western blot analysis. Nocodazole treatment induced G2/M arrest but co-treatment with TSA, an HDAC inhibitor, delayed cell cycle progression. However, the HMTase inhibitor, AdoX, had no effect on nocodazole-induced G2/M arrest, thereby indicating that sequential modifications of H3K9 are required for proper chromosome condensation. The expression of SUV39H1 and SETDB1, H3K9me3-responsible HMTases, are specifically increased along with H3K9me3 in nocodazole-arrested buoyant cells, which suggests that the increased expression of those proteins is an important step in chromosome condensation. H3K9me3 was highly concentrated in the vertical chromosomal axis during prophase and prometaphase. Collectively, the results of this study indicate that sequential modifications at H3K9 are associated with correct chromosome condensation, and that H3K9me3 may be relevant to the condensation of chromosome length.  相似文献   

11.
12.
Ethanol induced liver injury is associated with a global change in gene expression but its mechanisms are not known. We studied whether alcohol-induced gene expression is associated with post-translational methylations of histone H3. Primary culture of rat hepatocytes was treated with ethanol (50 or 100 mM) for 24 h and the status of methylation of H3 at lys 4 (H3dimeK4) or lys 9 (H3dimeK9) was monitored by Western blotting using antibodies to dimethylated histone H3 at lys 4 or lys 9. The cells exposed to ethanol showed strikingly opposing behaviors in methylation patterns; H3dimeK9 methylation was decreased whereas H3dimeK4 increased. Similar results were obtained in the interphase nuclei. Their binding on the metaphase chromosomes exhibits distinct site specific pattern of accumulation. Next, chromatin immunoprecipitation of the ethanol treated samples with antibodies for methylated lys 4 or lys 9 histone H3 followed by amplification of the immunoprecipitated DNA, was used to determine their association with the promoters of genes up- or downregulated by ethanol. Lys4 methylation was associated with ethanol upregulated genes (Adh, GST-yc2) whereas lys 9 methylation with downregulated genes (Lsdh, cytP4502c11) demonstrating a difference between these two methylations. These results suggest that exposure of hepatocytes to ethanol changes the expression of several susceptible genes which are associated with site specific modification of dimethylated forms of histone H3 amino termini at their regulatory regions.  相似文献   

13.
Post-translational modification of histone N-tails affects eukaryotic gene activity. In Arabidopsis, the histone modification level correlates with gene activation and repression in vernalization and flowering processes, but there is little information on changes in histone modification status and nucleosome structure under abiotic stresses. We determined the temporal and spatial changes in nucleosome occupancy and levels of H3K4me3, H3K9ac, H3K14ac, H3K23ac and H3K27ac in the histone H3 N-tail on the regions of four Arabidopsis drought stress-inducible genes, RD29A, RD29B, RD20 and At2g20880 [corrected], under drought stress conditions by chromatin immunoprecipitation analysis. We found two types of regulatory mechanisms of nucleosome occupancy function in the drought stress response. For RD29A and RD29B genes, nucleosome occupancy of promoter regions is low compared with that of coding regions, and no notable nucleosome loss occurs under drought stress. In contrast, nucleosome density is gradually decreased in response to drought stress on RD20 and At2g20880 [corrected] genes. Enrichments of H3K4me3 and H3K9ac correlate with gene activation in response to drought stress in all four genes. Interestingly, establishment of H3K4me3 occurs after accumulation of RNAPII on the coding regions of RD29A and At2g20880 [corrected]. Enrichment of H3K23ac and H3K27ac occurs in response to drought stress on the coding regions of RD29B, RD20 and At2g20880 [corrected], but not on the coding region of At2g20880 [corrected]. Our results indicate that histone modifications on the H3 N-tail are altered with gene activation on the coding regions of drought stress-responsive genes under drought stress conditions and that several patterns of nucleosome changes function in the drought stress response.  相似文献   

14.
Dosage compensation equalizes X-linked gene expression between the sexes. This process is achieved in Caenorhabditis elegans by hermaphrodite-specific, dosage compensation complex (DCC)-mediated, 2-fold X chromosome downregulation. How the DCC downregulates gene expression is not known. By analyzing the distribution of histone modifications in nuclei using quantitative fluorescence microscopy, we found that H4K16 acetylation (H4K16ac) is underrepresented and H4K20 monomethylation (H4K20me1) is enriched on hermaphrodite X chromosomes in a DCC-dependent manner. Depletion of H4K16ac also requires the conserved histone deacetylase SIR-2.1, while enrichment of H4K20me1 requires the activities of the histone methyltransferases SET-1 and SET-4. Our data suggest that the mechanism of dosage compensation in C. elegans involves redistribution of chromatin-modifying activities, leading to a depletion of H4K16ac and an enrichment of H4K20me1 on the X chromosomes. These results support conserved roles for histone H4 chromatin modification in worm dosage compensation analogous to those seen in flies, using similar elements and opposing strategies to achieve differential 2-fold changes in X-linked gene expression.  相似文献   

15.
16.
17.
Histone modifications play a crucial role in regulating gene expression and cell lineage determination and maintenance at the epigenetic level. To systematically investigate this phenomenon, this paper presented a statistical hybrid clustering algorithm to identify common combinatorial histone modification patterns. We applied the algorithm to 39 histone modification marks in human CD4 + T cells and detected 854 common combinatorial histone modification patterns. Our results could cover 211 (76.17%) patterns among 277 patterns identified by the tandem mass spectrometry experiments. Based on the frequency statistical analysis, it was found that the co-occurrence frequencies of 20 backbone modifications are greater than or close to 0.2 in the 854 patterns. we also found that 15 modifications (H2BK120ac, H4K91ac, H2BK20ac, etc.), three histone acetylations (H2AK9ac, H4K16ac, and H4K12ac) and five histone methylations (H3K79me1, H3K79me2, 3K79me3, H4K20me1, and H2BK5me1) were most likely prone to coexist respectively in these patterns. In addition, we found that DNA methylation tends to combine with histone acetylation rather than histone methylation.  相似文献   

18.
19.
20.
Histone posttranslational modifications (PTMs) help regulate DNA templated processes; however, relatively little work has unbiasedly explored the single-molecule combinations of histone PTMs, their dynamics on short timescales, or how these preexisting histone PTMs modulate further histone modifying enzyme activity. We use quantitative top down proteomics to unbiasedly measure histone H4 proteoforms (single-molecule combinations of PTMs) upon butyrate treatment. Our results show that histone proteoforms change in cells within 10 minutes of application of sodium butyrate. Cells recover from treatment within 30 minutes after removal of butyrate. Surprisingly, K20me2 containing proteoforms are the near-exclusive substrate of histone acetyltransferases upon butyrate treatment. Single-molecule hierarchies of progressive PTMs mostly dictate the addition and removal of histone PTMs (K16ac > K12ac ≥ K8ac > K5ac, and the reverse on recovery). This reveals the underlying single-molecule mechanism that explains the previously reported but indistinct and unexplained patterns of H4 acetylation. Thus, preexisting histone PTMs strongly modulate histone modifying enzyme activity and this suggests that proteoform constrained reaction pathways are crucial mechanisms that enable the long-term stability of the cellular epigenetic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号