首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为探讨西双版纳独特地方气候背景下,热带季节雨林CO2浓度的时空变化特征和不同时间尺度上环境因素对森林CO2浓度时间分布的作用,以及 为研究热带季节雨林的碳通量、净生态系统交换量(Net ecosystem exchange, NEE)等提供支持,我们利用热带季节雨林林冠上方和林内近地层 CO2浓度连续监测资料,结合同步气象资料进行了统计分析。研究结果表明:在植被生理活动、土壤呼吸以及林内湍流的共同作用下,西双版纳 热带季节雨林CO2浓度表现出明显的日变化、季节变化和林冠上下差异。在日尺度上,林冠上方的CO2浓度时间变化曲线为“单峰型”,林内近 地层CO2浓度时间变化曲线为“双峰型”,造成林内近地层傍晚第二个峰值的主要因子是地形因子作用下形成的局地环流。在季节尺度上,林冠 上方CO2浓度主要受林冠代谢作用的影响,呈现雨季低、干季高的特点,而林内近地层的CO2浓度则主要受地表呼吸过程所控制,季节变化趋势 与林冠上方相反。林冠上方CO2浓度低于林内近地层CO2浓度,且差异较大;在日尺度上,各月(除12月外)CO2浓度的最大差值皆大于80 mg·m -3,且出现在傍晚;在季节尺度上,最大值为-62.9 mg·m-3,出现在10月,最小值为-8.4 mg·m-3,出现在12月。  相似文献   

2.
青海省三江源区人工草地生态系统CO2通量   总被引:13,自引:2,他引:11       下载免费PDF全文
 了解三江源人工草地净生态系统CO2交换(Net ecosystem CO2 exchange, NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于认识青藏高原人工草地生态系统碳循环、生态价值、功能,以及对三江源区的生态安全的重要意义。该研究利用涡度相关技术,于2005年9月1日至2006年8月31日对位于青海腹地的垂穗披碱草(Elymus nutans)人工草地的NEE及生物和环境因子进行观测, 阐明NEE及其组分的动态变化特征和影响因子。三江源区人工草地生态系统的日最大吸收量为2.38 g C·m-2·d-1,出 现在7月30日。日间最大吸收率和最大排放率都出现在8月,分别为-6.82和2.95μmol CO2·m-2·s-1。在生长季, 白天的NEE主要受光合有效辐射(Photosynthe tically active rad iation, PAR)变化控制,同时又与叶面积指数和群落多样性交互作用,共同调节光合速率和光合效率的强度。最大光合同化速率为2.46~10.39μmol CO2·m-2·s-1,表观初始光能利用率为0.013~0.070μmol CO2·μmol-1 PAR。 在碳交换日过程中,NEE并不完全随着 PAR的增加而增大,当PAR超过某一值(>1 200μmol ·m-2·s-1)时,NEE随PAR的增加而降低。受温度的影响,生长季的生态系统的呼吸商Q10(1.8)小于非生长季节的 2.6)。 生态系统呼吸主要受温度的控制,同时也受到叶面积指数的显著影响。生长季昼夜温差大并不利于生态系统的碳获取。 三江源区人工草地生态系统是一个较强的碳汇,为-49.35 g C·m-2·a-1。  相似文献   

3.
通量          下载免费PDF全文
了解三江源人工草地净生态系统CO2交换(Net ecosystem CO2 exchange, NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于认识青藏高原人工草地生态系统碳循环、生态价值、功能,以及对三江源区的生态安全的重要意义。该研究利用涡度相关技术,于2005年9月1日至2006年8月31日对位于青海腹地的垂穗披碱草(Elymus nutans)人工草地的NEE及生物和环境因子进行观测, 阐明NEE及其组分的动态变化特征和影响因子。三江源区人工草地生态系统的日最大吸收量为2.38 g C·m-2·d-1,出 现在7月30日。日间最大吸收率和最大排放率都出现在8月,分别为-6.82和2.95μmol CO2·m-2·s-1。在生长季, 白天的NEE主要受光合有效辐射(Photosynthe tically active rad iation, PAR)变化控制,同时又与叶面积指数和群落多样性交互作用,共同调节光合速率和光合效率的强度。最大光合同化速率为2.46~10.39μmol CO2·m-2·s-1,表观初始光能利用率为0.013~0.070μmol CO2·μmol-1 PAR。 在碳交换日过程中,NEE并不完全随着 PAR的增加而增大,当PAR超过某一值(>1 200μmol ·m-2·s-1)时,NEEPAR的增加而降低。受温度的影响,生长季的生态系统的呼吸商Q10(1.8)小于非生长季节的 2.6)。 生态系统呼吸主要受温度的控制,同时也受到叶面积指数的显著影响。生长季昼夜温差大并不利于生态系统的碳获取。 三江源区人工草地生态系统是一个较强的碳汇,为-49.35 g C·m-2·a-1。  相似文献   

4.
 土壤呼吸响应全球气候变化对全球C循环具有重要作用。应用大型开顶箱(Open-top chamber, OTC)人工控制手段, 研究了大气CO2浓度倍增、高氮沉降和高降雨处理对南亚热带人工森林生态系统土壤呼吸的影响。结果表明: 对照箱、CO2浓度倍增处理以及高氮沉降处理下土壤呼吸速率都具有明显的季节变化, 雨季(4~9月)的土壤呼吸速率显著高于旱季(10月至次年3月) (p<0.001); 但高降雨处理下无明显的季节差异(p>0.05)。CO2浓度倍增能显著提高土壤呼吸速率(p<0.05), 其他处理则变化不大。大气CO2浓度倍增、高氮沉降、高降雨处理和对照箱的土壤呼吸年通量分别为4 241.7、3 400.8、3 432.0和3 308.4 g CO2·m–2·a–1。但在不同季节, 各种处理对土壤呼吸的影响是不同的。在雨季, 大气CO2浓度倍增和高氮沉降的土壤呼吸速率显著提高(p<0.05), 其他处理无显著变化; 而在旱季, 高降雨的土壤呼吸速率显著高于对照箱(p<0.05), 氮沉降处理则抑制土壤呼吸作用(p<0.05)。各处理的土壤呼吸速率与地下5 cm土壤温度之间具有显著的指数关系(p<0.001); 当土壤湿度低于15%时, 各处理的土壤呼吸速率与地下5 cm土壤湿度具有显著的线性关系(p<0.001)。  相似文献   

5.
 以砂培菊芋(Helianthus tuberosus)幼苗作为试验材料,分别进行不同浓度NaCl (50、 100、150、200、250 mmol&;#8226;L-1)和Na2CO3 (25、50、 75、100、125 mmol&;#8226;L-1)胁迫处理,以1/2全营养液作为对照,处理7 d后研究NaCl和Na2CO3胁迫处理对菊芋幼苗叶片光合作用及叶绿素动力学 参数的影响。结果表明:1)在NaCl处理下,当浓度小于150 mmol&;#8226;L-1时,增加了菊芋的叶绿素含量、净光合速率(Net photosynthetic rate, Pn)和气孔导度(Stomatal conductivity, Gs),对荧光参数PSⅡ的电子传递情况( Fm/Fo)、PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ量子效率 (Actual quantum yield of PSⅡ under actinic irradiation,φPSⅡ)和光化学猝灭系数(Photochemical quenching coefficient, qP)和非 光化学猝灭系 数(Non-photochemical quenching coefficient, NPQ)没有显著影响,随着浓度的增加,各项生理指标与对照相比除了NPQ显著 增加,其余均显著降低;2)在Na2CO3胁迫处理下,随着Na2CO3浓度的增加,与对照相比菊芋幼苗叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力 学参数Fm/Fo、Fv/Fm、φPSⅡ和qP均显著降低,NPQ显著增加;3)就NaCl和Na2CO3相比而言,在相同Na+浓度情况下,处于Na2CO3胁迫下的菊芋 幼苗的叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力学参数Fm/Fo、Fv/Fm、φPSⅡ和qP下降幅度和NPQ的增加幅度均显著大于NaCl,这说明 NaCl和Na2CO3胁迫均对菊芋幼苗造成不同程度的伤害,但在相同Na+浓度情况下,Na2CO3的伤害程度大于NaCl。由此说明菊芋对盐的忍耐程度高 于碱。  相似文献   

6.
干旱胁迫下藜的光合特性研究   总被引:3,自引:1,他引:2  
通过人工控制水分模拟干旱来研究生长期的藜对干旱胁迫的生理生化反应,以期望为干旱农业的高效生产提供理论依据。以盆栽的藜为材料,用称重控制浇水的方法,研究了干旱胁迫对藜叶片的光合特性。结果表明:干旱胁迫下藜的光合日变化呈双峰型,有“午休”现象(13:00)且受气孔限制;最大净光合速率出现在上午8:00。与正常条件下生长的藜相比,干旱胁迫下藜的光饱和点(LSP)、最大净光合速率(Pn)、表观量子效率(AQY)、二氧化碳饱和点(CSP)和羧化效率(CE)均降低,分别为1 200 μmolphoton·m-2·s-1、8.01 μmol CO2·m-2·s-1、0.016 1 μmol CO2·mol-1 photons、1 200 μmol CO2·mol-1、0.017 6 μmol CO2·m-2·s-1;光补偿点(LCP)、二氧化碳补偿点(CCP)升高,分别达到44.88 μmol photon·m-2·s-1、和46 μmol CO2·mol-1,干旱使藜的光合能力下降。干旱胁迫下藜的光合能力虽有所下降,但与其它C3植物相比仍具有较强的CO2同化能力。藜是一种耐旱力较强的植物。  相似文献   

7.
顾舒平  尹黎燕  李洁琳  李伟   《植物生态学报》2009,33(6):1184-1190
 运用pH-drift的方法研究了在不同碱度条件下中华水韭(Isoetes sinensis)的沉水叶片昼夜CO2吸收的特征。结果表明中华水韭的沉水叶片具有昼夜吸收水中CO2的能力, 而不具备利用水中的HCO 3的能力, 进一步证明了水生植物中华水韭的光合碳同化途径具有景天酸代谢(CAM)的特征。中华水韭沉水叶片光照条件下对水中CO2的吸收速率在一定的浓度范围内正相关于水中的CO2浓度。光照条件下, 中华水韭的pH-drift实验的pH补偿点分别为(8.1±0.3)和(7.9±0.1) mmol·L–1, 最终[CT]/Alk值为(1.009±0.01)和(1.022±0.004)。碱度对中华水韭夜晚CO2的吸收速率有显著的影响(F = 38.73, p < 0.000 1)。总碱度1.70 mmol·L–1溶液中的中华水韭沉水叶片在相对较低的CO2浓度(0.04±0.001 mmol·L–1)水平下即表现出对CO2的净吸收。调查了野外一处中华水韭沉水种群的生境pH值及CO2浓度的昼夜变化, 发现水体碱度约为1.59 mmol·L–1, 一昼夜的pH值波动不大, 平均为(6.1±0.04), 昼夜CO2浓度存在波动, 午夜水中的CO2浓度是午后的近3倍。  相似文献   

8.
采用控制环境生长室,研究了CO2浓度升高对2个种植密度下红桦幼苗生长和氮(N)、磷(P)含量的影响。试验设置CO2浓度为350和700 μmol·mol-12个水平,每个CO2浓度水平下又设密度28和84株·m-22个水平。结果表明:CO2浓度升高,红桦株高和叶面积指数(LAI)均增加,净同化率(NAR)值增加,叶质比(LMR)和比叶面积(SLA)均下降,但相对生长率(RGR)提高。CO2浓度增加,红桦幼苗茎枝、叶、根和总生物量提高,氮(N)、磷(P)含量降低,但单株N、P总吸收量均增加。CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。CO2浓度升高,红桦幼苗体内N、P浓度下降是由于生物量迅速增加引起的稀释效应造成的,而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。CO2浓度升高导致的植物生长的增加量会随植株密度的增加而降低,不同器官养分吸收量的增加量在低密度条件下比高密度条件下大得多,主要是因为高种植密度显著降低了植株各部位的干质量。  相似文献   

9.
西双版纳热带季节雨林优势树种树干呼吸特征   总被引:3,自引:0,他引:3       下载免费PDF全文
 采用红外气体分析法(IRGA)原位监测了西双版纳热带季节雨林11种优势树种树干呼吸速率、1 cm深树干温度以及林内空气变化情况。研究发 现,11种优势树种的树干呼吸具有相同的季节规律,并且雨季均大于干季时的树干呼吸。树种间树干呼吸速率差异显著,在0. 823~2.727 μmol&;#8226;m-2&;#8226;s-1。树干1.3 m处所测南北方向树干呼吸无显著性差异。树干呼吸与树干温度显著相关(0.552<0.92),呈良好的自然指数回归关 系,Q10值为1.90~3.03。20 ℃时各树种的RT(总树干呼吸)速率为0.771~2.570μmol&;#8226;m-2&;#8226;s-1。  相似文献   

10.
采用预设取样器和静态箱气相色谱法,对渗滤液灌溉条件下,土柱土壤不同深度剖面 N2O的浓度以及N2O和CO2的表面释放通量进行了监测.结果表明: 渗滤液灌溉可促进N2O的生成和释放,灌溉后24 h内土柱N2O的释放通量与表土下10 cm(r=0.944,P< 0.01)、20 cm(r=0.799,P<0.01)、30 cm(r=0.666,P<0.01)和40 cm(r=0.482,P<0.05)处所生成的N2O浓度呈显著相关,且相关程度依次递减.渗滤液灌溉还促进了CO2的释放,但N2O与CO2释放通量之间无显著相关性(P>0.05).渗滤液的灌溉负荷主要决定温室气体释放总量的强弱(N2O和CO2,以CO2当量计),灌溉负荷为6 mm·d-1条件下温室气体释放总量为灌溉负荷2 mm·d-1的3倍多.采用表土下20 cm处灌溉方式可比表土下10 cm处灌溉方式削减47%的温室气体释放总量.渗滤液灌溉土壤14 d内,N2O释放量约占温室气体释放总量的57.0%~91.0%.  相似文献   

11.
改变凋落物输入对杉木人工林土壤呼吸的短期影响   总被引:9,自引:0,他引:9       下载免费PDF全文
从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p>0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m-2·h-1, 比对照处理土壤呼吸速率(180.9 mg CO2·m-2·h-1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m-2·h-1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e0.087 2t(R2=0.853, p<0.001), y=37.25e0.088 8t(R2=0.896, p<0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p>0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。  相似文献   

12.
川中丘陵区水稻田土壤呼吸及其影响因素   总被引:16,自引:0,他引:16       下载免费PDF全文
基于川中丘陵区2003年4~9月水稻田土壤呼吸、土壤温度和水稻(Oryza sativa)生物量的测定,研究了水稻田土壤呼吸日变化和季节变化特征以及影响稻田土壤呼吸的主要因素。结果表明,水稻田土壤CO2排放通量的日变化为单峰型,其最小值和最大值分别出现在当地时间7∶00和15∶00;在水稻生长期内,稻田土壤CO2排放通量在18.00~269.69 mg·m-2·h-1之间波动,平均排放通量为121.76 mg·m-2·h-1。在日的时间尺度上,水稻田土壤CO2排放通量与5 cm土壤温度存在显著的指数函数关系;而从整个生长期时间尺度上看,水稻田土壤CO2的排放通量主要受到5 cm土壤温度和水稻地下生物量的影响。在水稻生长初期,水稻地下生物量与稻田土壤CO2排放通量之间存在着显著的相关关系;水稻拔节中后期到成熟期,土壤温度则是制约稻田土壤CO2排放的关键因素。CO2排放通量与稻田地表水层深度的相关关系不显著。  相似文献   

13.
 CO2浓度升高与氮沉降增加对陆地生态系统的耦合作用已成为全球变化的研究热点。应用大型开顶箱(OTC)人工控制手段研究了人工生态系统在1)高CO2(700±20 μmol·mol–1)+高氮沉降(100 kg N·hm–2·a–1)(CN); 2)高CO2(700±20 μmol·mol–1)+背景氮沉降(C+); 3)高氮沉降(100 kg N· hm–2·a–1)+背景CO2(N+); 4)背景CO2+背景氮沉降处理(CK) 4种处理条件下荷木 (Schima superba)、红锥(Castanopsis hystrix)、海南红豆(Ormosia pinnata)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)等主要南亚热带森林植物的生物量积累模式及其分配格局。连续近3年的实验结果表明: 不同处理条件下, 各参试植物生物量积累具有不同的响应特征, N+处理显著促进荷木、肖蒲桃及红鳞蒲桃生物量的积累; C+处理显著促进肖蒲桃、海南红豆生物量的积累; CN处理显著促进除红锥外其他物种生物量的积累, 并且具有两者单独处理的叠加效应。不同处理改变物种生物量的分配模式, N+处理降低植物的根冠比, 促进地上部分生物量的积累; C+处理增加红锥和红鳞蒲桃地下部分生物量的分配, 却促进荷木和海南红豆地上部分的积累; CN处理仅促进红磷蒲桃地下部分的积累。群落生物量的积累与分配格局取决于优势物种的生物量及其分配格局在群落中所占的权重。  相似文献   

14.
 依托FACE(Free-air CO2 enrichment)研究平台, 利用特制分根集气生长箱, 采用静态箱-GC(Gas chromatography)法, 连续两年研究 了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明, CO2浓度升高和高氮 肥量均不同程度地增加了3个阶段的地上部和地下部的生物量, 这有利于增加根茬的还田量; CO2浓度升高对冬小麦不同生长阶段的根系呼吸影 响不同, 在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸, 2004~2005季分别增加33.8%(148.1 mg N&;#8226;kg-1 干土, HN)和43.9%(88.9 mg N&;#8226;kg-1 干土, LN), 2005~2006季分别为23.8%(HN)和28.9%(LN); 而灌浆末期显著降低了根系呼吸, 2004~2005季分别降低31.4%(HN)和23.3% (LN), 2005~2006季分别为25.1%(HN)和18.5%(LN); 高施氮量比低施氮量促进了根系呼吸; 随着作物生长根系呼吸与地下生物量呈显著线性负相 关, 高CO2环境中的R2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性.  相似文献   

15.
 亚热带杉木(Cunninghamia lanceolata)和马尾松(Pinus massoniana)在我国森林资源中占有十分重要的地位, 研究它们的土壤与表层凋落物的呼吸有助于了解它们的碳源汇时空分布格局及碳循环过程的关键驱动因子。采用Li-Cor 6400-09连接到Li-6400便携式CO2/H2O分析系统测定湖南两种针叶林群落(2007年1月至12月)的土壤呼吸及其相关根生物量和土壤水热因子。研究结果表明: 杉木和马尾松群落中土壤呼吸的季节变化显著, 在季节动态上的趋势相似, 都呈不规则曲线格局, 全年土壤呼吸速率平均值分别为186.9 mg CO2&#8226;m–2&#8226;h–1和242.4 mg CO2&#8226;m–2&#8226;h–1。从1月开始, 两种群落的土壤呼吸速率由最小值33.9 mg CO2&#8226;m–2&#8226;h–1和38.6 mg CO2&#8226;m–2&#8226;h–1随着气温的升高而升高, 杉木群落到7月底达到全年中最大值326.3 mg CO2&#8226;m–2&#8226;h–1, 而马尾松群落到8月中旬达到最大值467.3 mg CO2&#8226;m–2&#8226;h–1, 土壤呼吸的季节变化与土壤温度呈显著的指数相关, 土壤温度可以分别解释土壤呼吸变化的91.7%和78.0%, 和土壤含水量呈二次方程关系, 土壤含水量可以解释土壤呼吸变化的5.4%和8.4%。由土壤呼吸与土壤温度拟合的指数方程计算Q10值, 杉木和马尾松群落中全年土壤呼吸的Q10值分别为2.26和2.13, Q10值随着温度升高逐渐减小。两种群落土壤呼吸的差异主要受群落植被的根生物量、群落的凋落物量的影响。  相似文献   

16.
华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应   总被引:15,自引:2,他引:13       下载免费PDF全文
2007年11月至2008年11月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮沉降试验, 氮沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)。每月下旬, 采用红外CO2分析法测定土壤呼吸速率, 并定量地对各处理施氮(NH4NO3)。结果表明: 2008年试验地氮沉降量为8.241 g·m-2, 超出该地区氮沉降临界负荷。在生长季节, 苦竹林根呼吸占总土壤呼吸的60%左右。模拟氮沉降促进了苦竹林土壤呼吸速率, 使苦竹林土壤每年向大气释放的CO2增加了9.4%~28.6%。在大时间尺度上(如1 a), 土壤呼吸主要受温度的影响。2008年6~10月, 土壤呼吸速率24 h平均值均表现为: 对照<低氮<中氮<高氮。氮沉降处理1 a后, 土壤微生物呼吸速率和土壤微生物生物量碳、氮增加, 并且均与氮沉降量具有相同趋势。各处理土壤呼吸速率与10 cm土壤温度、月平均气温呈极显著指数正相关关系, 利用温度单因素模型可以解释土壤呼吸速率的大部分。模拟氮沉降使得土壤呼吸Q10值增大, 表明氮沉降可能增强了土壤呼吸的温度敏感性。在氮沉降持续增加和全球气候变暖的背景下, 氮沉降和温度的共同作用可能使得苦竹林向大气中排放的CO2增加。  相似文献   

17.
 该文利用涡度协方差法和生理生态学方法(不同分量的累积和)获得的通量观测数据,对老山落叶松(Larix gmelinii)林(45°20′N, 127°34 ′E)的碳收支进行了分析。通过对每0.5 h所测数据进行的分析表明,能量平衡达到75%,说明涡度协方差法适应于本站的研究。较阴天气情况 下,林分光照利用效率显著高于晴朗天气,可能归因于阴天较多的散射光。以单位土地面积计算发现,通过涡度协方差法计算的落叶松林生态 系统的总初级生产力在20~50 μmol•m-2•s-1之间,远高于冠层叶片的总光合速率9.8~23.4μmol•m-2•s-1 (平均值16.2μmol•m-2•s-1 ),而 当综合考虑冠层光合和林下植物光合作用时,两种方法测定结果吻合性较好,说明林下植物对落叶松林碳平衡有重要影响。在估计森林生态系 统呼吸方面,以有风夜晚净生态系统交换量(NEE)来代表生态系统呼吸总量(3~9μmol•m-2•s-1)低估了生态系统呼吸总量,粗略估计较生 理生态学方法(不同呼吸分量的累积和)低估了50%左右(14.2μmol•m-2•s-1)。结果发现两种方法在估计森林碳平衡方面存在一定的差异, 呼吸量的估计差异应是今后研究的重点。  相似文献   

18.
中国森林生态系统土壤CO2释放分布规律及其影响因素   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环变化的关注。陆地生态系统在全球变暖格局下的地位与作用,尤其是土壤碳库对全球变暖格局的响应是全球变化研究的焦点。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,也就成为各国生态学家研究的重点内容。在对我国森林生态系统CO2释放通量以及相关气候、生物等因子的资料进行收集、整理和分析的基础上,探讨了我国森林生态系统土壤CO2释放的分布规律,以及这种规律性分布的气候、生物影响因素。对于我国这样一个南北跨度大的国家,不同区域的森林生态系统土壤CO2释放通量间存在较大的差异,在全国尺度上,森林生态系统土壤CO2释放通量平均值为(1.79 ± 0.86) g C m-2 d-1,而且土壤CO2释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤CO2释放受到生物、非生物因子或独立、或综合的影响。通过分析指出,在全国尺度上,年均温、降雨量、群落净生产力及凋落物量显著地影响森林土壤CO2释放通量。同时,也正是这些影响因子的纬度分布,导致了我国森林生态系统土壤CO2释放通量的纬度分布规律。作为衡量土壤CO2释放对温度敏感性的重要指标,计算了我国森林生态系统土壤CO2释放温度敏感性系数-Q10值,约为1.5,该值显著低于全球平均水平,2.0。  相似文献   

19.
冬季土壤呼吸:不可忽视的地气CO2交换过程   总被引:5,自引:0,他引:5       下载免费PDF全文
 冬季土壤呼吸是生态系统释放CO2的极为重要的组成部分,并显著地影响着碳收支。然而,过去绝大多数工作集中在生长季节土壤呼吸的测定,对年土壤呼吸量的估算大多基于冬季土壤呼吸为零的假设。目前为数不多的研究集中在极地苔原和亚高山,其它植被类型的研究只有零星报道。极地苔原和森林冬季土壤呼吸速率分别为0.002~1.359和0.22~0.67 μmol C.m-2·s-1;土壤呼吸的CO2释放量分别为0.55~26.37和22.4~152.0 g C·m-2,是地气CO2交换过程中不可忽视的环节。雪是土壤呼吸过程的重要调节者,积雪厚度和覆盖时间的长短均会影响土壤呼吸的强弱;水分的可获取性是重要的限制因素;对于维持活跃的土壤呼吸有一个关键的土壤温度临界值(-7~-5 ℃),低于这个值会因自由水的缺乏而抑制异养微生物的呼吸。如果存在绝缘的积雪层,可溶性碳底物在自由水存在的情况下可控制异养微生物的活力。该文对冬季土壤呼吸的重要性、研究方法、土壤呼吸强度及其影响机制等进行了综述,并讨论了冬季土壤呼吸研究中存在的问题及未来研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号