首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Genetically uniform burley tobacco (Nicotiana tabacum) was grown under field and various controlled-environment conditions to determine whether environment influenced epicuticular alkane, fatty acid, and fatty-alcohol composition of the leaves. Quantity and quality of alkanes, fatty acids, and fatty alcohols were greatly influenced by environmental conditions. Highest light intensity did not result in the largest total long aliphatic carbon-chain production. Generally, long photoperiod and cool temperature were associated with highest long aliphatic carbon-chain production on a leaf area basis. Quantity of the individual alkane, fatty acid, or fatty alcohol classes present under the different growth conditions varied in relation to the leaf metabolic status and not leaf size.  相似文献   

2.
The epicuticular waxes of the two sorghum varieties Alliance A and SD 102 have been analyzed, after separation of the leaf blades from the sheaths. The major constituents were found to be free fatty acids but small amounts of esters, aldehydes, alcohols, n-alkanes and sterols were also detected. The typical chain lengths of aldehydes, free alcohols and free fatty acids were C28 and C30.  相似文献   

3.
Very long chain fatty acids (VLCFAs) are essential components for eukaryotes. They are elongated by the elongase complex in the endoplasmic reticulum and are incorporated into four major lipid pools (triacylglycerols, waxes, phospholipids, complex sphingolipids). Functional analysis of several components of the elongase complex demonstrated the essential role of VLCFAs in plants, invertebrates and vertebrates. Although VLCFAs changes in the triacylglycerol pool has no consequence for plant development, modifications of the nature and levels of VLCFAs in waxes, phospholipids and complex sphingolipids have, collectively, profound effects on embryo, leaf, root and flower development. VLCFAs levels in epicuticular waxes are critical for the regulation of epidermal fusions during organogenesis. VLCFAs phospholipids and sphingolipids are involved in membrane structure and dynamics regulating cell size but also division and differentiation. This review summarizes the recent findings in plants but also in other organisms, highlighting the importance of very long acyl chain length during development.  相似文献   

4.
Total lipid content, lipid classes and fatty acid composition in organs of Macoma balthica (L.) from the Gulf of Gdánsk (Puck Bay) were studied in different seasons. Marked differences among tissues in lipid class composition were observed. Triacylglycerides were accumulated in the hepatopancreas and in the female gonad in large quantities, while hydrocarbons were concentrated in male gonads, gills muscles and mantle. Fatty acid composition of gill lipids reflects the brackish water conditions of the Gulf of Gda sk in which Macoma balthica occurs.  相似文献   

5.
The fatty acid, sterol and hydrocarbon compositions of the fresh leaves from eleven species of mangroves, cultivated in a shadehouse, are reported. The fatty acid and sterol analyses, whilst generally typical of higher plants, showed several chemotaxonomically significant differences between the species. The epicuticular wax hydrocarbons and fatty acids were low in abundance compared to previous reports of mangrove leaf lipids, which may reflect the importance of environmental influences on this group of compounds. Cluster analysis of selected subsets of the data showed clear chemotaxonomic divisions amongst the mangroves. The results grouped the mangroves into genera, except for the Rhizophora and Ceriops tagal which were not separated, and grouped the family Rhizophoraceae distinct from all other species except Xylocarpus granatum. Avicennia marina var. resinifera was able to be distinguished from Avicennia marina by cluster analysis, supporting its assignment as a distinct variety. The results show that the lipids of mangroves are chemotaxonomically significant.  相似文献   

6.
Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated ω-hydroxy fatty acids and α,ω-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.  相似文献   

7.
High-value oils from plants   总被引:8,自引:3,他引:5  
The seed oils of domesticated oilseed crops are major agricultural commodities that are used primarily for nutritional applications, but in recent years there has been increasing use of these oils for production of biofuels and chemical feedstocks. This is being driven in part by the rapidly rising costs of petroleum, increased concern about the environmental impact of using fossil oil, and the need to develop renewable domestic sources of fuel and industrial raw materials. There is also a need to develop sustainable sources of nutritionally important fatty acids such as those that are typically derived from fish oil. Plant oils can provide renewable sources of high-value fatty acids for both the chemical and health-related industries. The value and application of an oil are determined largely by its fatty acid composition, and while most vegetable oils contain just five basic fatty acid structures, there is a rich diversity of fatty acids present in nature, many of which have potential usage in industry. In this review, we describe several areas where plant oils can have a significant impact on the emerging bioeconomy and the types of fatty acids that are required in these various applications. We also outline the current understanding of the underlying biochemical and molecular mechanisms of seed oil production, and the challenges and potential in translating this knowledge into the rational design and engineering of crop plants to produce high-value oils in plant seeds.  相似文献   

8.
The composition of hydrocarbons, fatty acids, and of total, polar, and neutral lipids was studied in freshwater Potamogetonaceae grasses collected in two different regions of the Volga river. More than 40 fatty acids and hydrocarbons were separated and identified by chromato-mass spectrometry. The variability of lipid characteristics of plants of the same family is discussed.  相似文献   

9.
The chemical composition of the essential oils of twenty-five populations of Cistus creticus subsp. creticus L. from the island of Crete (Greece) and their interpopulation variability were analysed in detail by GC-MS. 142 compounds were identified representing an average of 56.8-89.8% of the oil composition. The components are represented here by homologous series of monoterpenes, oxygenated monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, diterpenes, labdane diterpenes, aldehydes, alkanes, esters, fatty acids, ketones, and others. Labdane diterpenes were detected and identified in the essential oils and have been found in high percentage composition. The results from the chemical analysis of the essential oils were submitted to chemometric cluster analysis in order to detect some pattern distribution and to identify which constituents can differentiate the groups of individuals. Two main chemotypes (clusters) were well differentiated; the first deals with eight populations of West Crete and the second with the rest of the populations. Cluster analysis based on labdane type diterpenes patterns, proved to be the best chemotype for the examined populations among the other chemical groups.  相似文献   

10.
Epicuticular wax from mature plants of Sorghum bicolor SD-102 was compared with that from panicles and seedlings of the same variety at the fourth-fifth leaf stage of growth. The composition of wax from SD-102 panicles was quite different from that of mature leaf blades and sheaths. Free fatty alcohols were the dominant class of wax from SD-102 seedlings and C32 was the major homologue of alcohols and aldehydes. For comparison purposes, the epicuticular waxes from whole plants of two other S. bicolor varieties, Alliance A and Martin A, grown up to the tasseling stage, have been analysed. The major wax components were free fatty acids. The typical chain lengths of aldehydes, free alcohols and free fatty acids were C28 and C30.p-Hydroxybenzaldehyde was not a wax component of the studied varieties of sorghum.  相似文献   

11.
The phytochemical study on ten populations of Salvia multicaulis Vahl. revealed that their essential oil qualitative profiles contained a significant amount of monoterpene hydrocarbons, which were the most abundant compounds. Besides, α-Pinene was the major constituent in all studied populations' essential oils. Significant correlations were observed between edaphic parameters and some major essential oil compounds. According to clustering analyses of the chemical data, the S. multicaulis populations were divided into three chemotypes: β-caryophyllene, camphene and camphor, and limonene. The population genetics study showed significant molecular differences among the populations. The Mantel test indicated a significant positive correlation between the geographical distances and genetic diversity, exhibiting a low amount of gene flow and a considerable genetic differentiation value. We also detected four genotypes based on the Nei's genetic distance and structure analysis. The identified chemical and genetic similarities/differences among these populations were correlated with edaphic parameters and geographic distances, suggesting that environmental factors are the primary drivers of the chemical polymorphism of essential oils in S. multicaulis populations.  相似文献   

12.
The essential oils of Stachys alpina L., Stachys officinalis (L.) Trevis., Stachys palustris L., Stachys recta L. subsp. recta, S. recta L. subsp. subcrenata (Vis.) Briq., Stachys salviifolia Ten., and Stachys sylvatica L. were obtained by hydrodistillation and analysed by gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). Sesquiterpene hydrocarbons were the main group of constituents of all taxa, except S. alpina, which was rich in oxygenated sesquiterpenes. S. alpina and S. palustris had a significant aldehyde fraction and a high amount of alcohols. Some differences in the essential oil composition of two subspecies of S. recta (S. recta subsp. recta and S. recta subsp. subcrenata), growing under almost identical conditions, have been found.  相似文献   

13.
The essential oils isolated from nine geographical provenances of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) leaves were examined by GC-MS and their chemical constituents were compared. According to GC-MS and cluster analyses the leaf essential oils of the nine provenances and their relative contents were classified into six chemotypes-cinnamaldehyde type, cinnamaldehyde/cinnamyl acetate type, cinnamyl acetate type, linalool type, camphor type and mixed type. In addition, the antifungal activities of leaf essential oils and their constituents from six chemotypes of indigenous cinnamon were investigated in this study. Results from the antifungal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against white-rot fungi, Trametes versicolor and Lenzites betulina and brown-rot fungus Laetiporus sulphureus. The antifungal indices of leaf essential oils from these two chemotypes at the level of 200 micro/ml against T. versicolor, L. betulina and L. sulphureus were all 100%. Among them, the IC(50) (50% of inhibitory concentrations) value of the essential oil of cinnamaldehyde type leaf against L. sulphureus was 52-59microg/ml. Cinnamaldehyde possessed the strongest antifungal activities in comparison with other constituents of the essential oils from cinnamaldehyde type leaf, at the level of 100microg/ml its antifungal indices against T. versicolor, L. betulina and L. sulphureus were 100%. The IC50 values of cinnamaldehyde against T. versicolor, L. betulina and L. sulphureus were 73, 74 and 73microg/ml, respectively.  相似文献   

14.
The variation in terpene composition of the leaf essential oil was studied in three populations of Valeriana officinalis L. subsp, collina. These populations grow in Italy in environmentally very different areas. Our examination of geographically and ecologically distant populations has provided evidence for substantial Iocal intrasubspecific differentiation. Statistical treatment of chemical data revealed two distinct chemical varieties of subspecies collina.  相似文献   

15.
Abstract Leaf surfaces of Festuca arundinacea Schreb. were subjected to controlled polishing and abrasion on a test-bed designed to simulate components of abrasive wind damage. Both treatments substantially increased the leaf surface conductance, particularly the polishing treatment. Scanning electron micrographs of cryo-fixed leaf surfaces showed displacement and smoothing of the epicuticular waxes, damage to the cuticle, collapse of epidermal cells and fracture of trichomes. The importance of the epicuticular waxes in determining leaf diffusivity and permeability is discussed.  相似文献   

16.
首次报告了利用简单的叶片氧化实验可区别油菜正常株系及具有高油酸(低亚油酸)性状的fad2基因(Δ12-fatty acid desaturase gene)突变体。突变体叶片内的有色或具还原性的物质能被次氯酸钠及硝酸银溶液在5-10min漂白或氧化,正常株系及突变体的fad2基因功能补偿转化体的叶片被漂白的时间需要24-48h。通过扫描电镜观察揭示了突变体与正常株系之间叶片表面蜡颗粒沉积均匀性上的差异。实验结果表明:fad2基因的突变改变了叶片表面蜡的沉积结构并增大了叶片表层的溶液渗透性,其原因可能与木质(cutan)的合成受抑制相关。  相似文献   

17.
Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine‐like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α‐linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α‐linolenic acids increased with lowering temperature. γ‐linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types.  相似文献   

18.
Metabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.  相似文献   

19.
Wild guava trees (Psidium guajava) in Fiji can be classified into three main chemotypes on the basis of the relative amounts of sesquiterpene hydrocarbons present in the leaf essential oils. The principal components include caryophyllene, β-bisabolene, aromadendrene, β-selinene, nerolidiol, caryophyllene oxide and sel-11-en-4α-ol.  相似文献   

20.
BACKGROUND AND AIMS: The morphology of the epicuticular leaf waxes of Wollemia nobilis (Araucariaceae) was studied with special emphasis on the relationship between the microstructure of epicuticular wax crystals and their chemical composition. Wollemia nobilis is a unique coniferous tree of the family Araucariaceae and is of very high scientific value as it is the sole living representative of an ancient genus, which until 1994 was known only from fossils. METHODS: Scanning electron microscopy (SEM), gas chromatography (GC) combined with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) were used for characterizing the morphology and the chemical structure of the epicuticular wax layer of W. nobilis needles. KEY RESULTS: The main component of the leaf epicuticular wax of W. nobilis is nonacosan-10-ol. This secondary alcohol together with nonacosane diols is responsible for the tubular habit of the epicuticular wax crystals. Scanning electron micrographs revealed differences in the fine structure of adaxial and abaxial leaf surfaces that could be explained by gas chromatographic studies after selective mechanical removal of the waxes. CONCLUSIONS: SEM investigations established the tubular crystalline microstructure of the epicuticular wax of W. nobilis leaves. GC-MS and NMR experiments showed that nonacosan-10-ol is the major constituent of the epicuticular wax of W. nobilis leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号