首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Versatility of MicroRNA biogenesis   总被引:1,自引:0,他引:1  
Volk N  Shomron N 《PloS one》2011,6(5):e19391
  相似文献   

2.
KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3′UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3′UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.  相似文献   

3.
Dicer, an enzyme involved in microRNA (miRNA) maturation, is required for proper cell differentiation and embryogenesis in mammals. Recent evidence indicates that Dicer and miRNA may also regulate tumorigenesis. To better characterize the role of miRNA in primary cell growth, we generated Dicer-conditional mice. Ablation of Dicer and loss of mature miRNAs in embryonic fibroblasts up-regulated p19(Arf) and p53 levels, inhibited cell proliferation, and induced a premature senescence phenotype that was also observed in vivo after Dicer ablation in the developing limb and in adult skin. Furthermore, deletion of the Ink4a/Arf or p53 locus could rescue fibroblasts from premature senescence induced by Dicer ablation. Although levels of Ras and Myc oncoproteins appeared unaltered, loss of Dicer resulted in increased DNA damage and p53 activity in these cells. These results reveal that loss of miRNA biogenesis activates a DNA damage checkpoint, up-regulates p19(Arf)-p53 signaling, and induces senescence in primary cells.  相似文献   

4.
5.
Recently, it was reported that knockdown of DICER reduced the ATM-dependent DNA damage response and homologous recombination repair (HRR) via decreasing DICER-generated small RNAs at the damage sites. However, we found that knockdown of DICER dramatically increased cell resistance to camptothecin that induced damage required ATM to facilitate HRR. This phenotype is due to a prolonged G1/S transition via decreasing DICER-dependent biogenesis of miRNA let-7, which increased the p21Waf1/Cip1/p27Kip1 levels and resulted in decreasing the HRR efficiency. These results uncover a novel function of DICER in regulating the cell cycle through miRNA biogenesis, thus affecting cell response to DNA damage.  相似文献   

6.
7.
廖清池  周胜华 《生物磁学》2011,(14):2779-2782
microRNA(miRNA)是一类非编码的小分子单链RNA,主要通过转录后抑制靶基因表达调节各种生物功能。miRNA表达水平在正常发育过程中以及在癌症及心血管疾病等各种疾病中发生变化。目前控制miRNA生物合成的信号途径以及调节机制尚未完全阐明。miRNA基因转录后在大蛋白复合体的介导下经一系列协调加工过程形成成熟的miRNA。近来发现转化生长因子β(TGFβ)信号途径的转导因子Smad蛋白在细胞核内调节miRNA的加工处理过程起重要作用。本文主要综述TGFβ/Smad信号途径在miRNA生物合成中的调节作用。  相似文献   

8.
miRNA response to DNA damage   总被引:1,自引:0,他引:1  
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.  相似文献   

9.
MicroRNAs (miRNAs) are versatile regulators of gene expression and undergo complex maturation processes. However, the mechanism(s) stabilizing or reducing these small RNAs remains poorly understood. Here we identify mammalian immune regulator MCPIP1 (Zc3h12a) ribonuclease as a broad suppressor of miRNA activity and biogenesis, which counteracts Dicer, a central ribonuclease in miRNA processing. MCPIP1 suppresses miRNA biosynthesis via cleavage of the terminal loops of precursor miRNAs (pre-miRNAs). MCPIP1 also carries a vertebrate-specific oligomerization domain important for pre-miRNA recognition, indicating its recent evolution. Furthermore, we observed potential antagonism between MCPIP1 and Dicer function in human cancer and found a regulatory role of MCPIP1 in the signaling axis comprising miR-155 and its target c-Maf. These results collectively suggest that the balance between processing and destroying ribonucleases modulates miRNA biogenesis and potentially affects pathological miRNA dysregulation. The presence of this abortive processing machinery and diversity of MCPIP1-related genes may imply a dynamic evolutional transition of the RNA silencing system.  相似文献   

10.
11.
Liu Y  Liu Q 《Molecular cell》2011,41(4):367-368
In this issue of Molecular Cell, Zhang and colleagues (Zhang et?al., 2011) describe a critical link between the DNA damage response and the miRNA pathway, in which DNA double-strand breaks (DSBs) induce ATM-dependent KSRP phosphorylation to facilitate pri-miRNA processing.  相似文献   

12.
DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.  相似文献   

13.
ATM activation following DNA damage is a critical event which is required for efficient DNA repair and cell survival, yet signaling mechanisms controlling its activation are incompletely understood. The RhoGEF Net1 has previously been reported to control Rho GTPase activation and downstream cell survival outcomes following double strand DNA damage. However the role of Net1 isoforms in controlling ATM-dependent cell signaling has not been assessed. In the present work we show that expression of the Net1A isoform is specifically required for efficient activation of ATM but not the related kinase DNA-PK after ionizing radiation. Surprisingly Net1A overexpression also potently suppresses ATM activation and phosphorylation of its substrate H2AX. This effect does not require catalytic activity towards RhoA or RhoB, and neither Rho GTPase affects ATM activation, on its own. Consistent with a role in controlling ATM activation, Net1A knockdown also impairs DNA repair and cell survival. Taken together these data indicate that Net1A plays a plays a previously unrecognized, Rho GTPase-independent role in controlling ATM activity and downstream signaling after DNA damage to impact cell survival.  相似文献   

14.
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.  相似文献   

15.
16.
Wang W  Ye R  Xin Y  Fang X  Li C  Shi H  Zhou X  Qi Y 《The Plant cell》2011,23(10):3565-3576
As key components in the eukaryotic gene regulatory network, microRNAs (miRNAs) themselves are regulated at the level of both metabolism and activity. To identify factors that modulate miRNA activity, we used an Arabidopsis thaliana transgenic line expressing an artificial miRNA that causes trichome clustering and performed a screen for mutants with compromised miRNA activity (cma mutants) or enhanced miRNA activity (ema mutants). From this screen, we identified two novel mutant alleles of SERRATE, which is known to be required for miRNA biogenesis and dozens of other cma and ema mutants. In this study, we analyzed ema1. SAD2/EMA1 encodes an Importin β protein. The ema1 mutation had no effects on the accumulation of miRNAs and ARGONAUTE1 (AGO1) or on their cytoplasmic and nuclear distributions. Intriguingly, we found that the miRNA effector complexes purified from ema1 contained a larger amount of miRNAs and displayed elevated mRNA cleavage activities, indicating that EMA1 modulates miRNA activity by influencing the loading of miRNAs into AGO1 complexes. These results implicate EMA1 as a negative regulator of the miRNA pathway and reveal a novel layer of miRNA activity modulation.  相似文献   

17.
18.
MicroRNA biogenesis and function in plants   总被引:33,自引:0,他引:33  
Chen X 《FEBS letters》2005,579(26):5923-5931
  相似文献   

19.
20.
MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs (“onco-miRs”) as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs (“suppressor-miRs”) are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号