首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
MircroRNA (miRNA)是一段长度约为22个nt的小型非编码RNA,广泛存在于真核生物中,具有调节基因表达的作用。对miRNA的鉴定、功能分析和调控机理研究已成为当今生物领域的热点。miR-302/367cluster属于胚胎干细胞特异性细胞周期调控miRNAs家族成员(embryonic stem cell-specific cell cycle-regulating family of microRNAs,ESCC miRNAs),通常由5个成员miR-302a、miR-302b、miR-302c、miR-302d及miR-367组成,大多分布在脊椎动物中。研究表明,该miRNAs簇对细胞多种生理过程起重要调控作用,如人胚胎干细胞(hESCs)多能性的维持、自我更新等。本研究概述了miRNA的合成及作用机理,ESCC miRNAs促进体细胞再程序化,并总结了miR-302/367 cluster在细胞周期调控、表观遗传修饰及一些细胞信号转导途径中的作用,为采用该类miRNAs诱导体细胞再程序化为iPS细胞(Induced pluripotent stem cells)提供一定的理论基础。  相似文献   

2.
3.
4.
Small RNA-mediated regulation of iPS cell generation   总被引:1,自引:0,他引:1  
  相似文献   

5.
The microRNA (miRNA) pathway represents an integral component of the gene regulation circuitry that controls development. In recent years, the role of miRNAs in embryonic stem (ES) cells and mammalian embryogenesis has begun to be explored. A few dozens of miRNAs expressed in mammalian ES cells, either exclusively or nonexclusively, have been cloned. The overall role of miRNAs in ES cells and embryonic development has been assessed by examining the effect of knocking out Dicer, an RNase III enzyme required for miRNA and small interfering RNA biogenesis, as well as DGCR8, a nuclear protein specifically involved in miRNA biogenesis. In addition, the role of a cluster of miRNAs specifically expressed in ES cells, the miR-290-295 group, has been investigated by the knock-out approach. These analyses have revealed the crucial role of miRNAs in ES cell differentiation, lineage specification, and organogenesis, especially neurogenesis and cardiogenesis. Systematic investigation of the role of miRNAs in ES cells and embryos will allow us to find missing pieces of the mosaic of early development.  相似文献   

6.
7.
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.  相似文献   

8.
microRNAs modulate iPS cell generation   总被引:1,自引:0,他引:1  
Yang CS  Li Z  Rana TM 《RNA (New York, N.Y.)》2011,17(8):1451-1460
  相似文献   

9.
miR-34 miRNAs provide a barrier for somatic cell reprogramming   总被引:3,自引:0,他引:3  
  相似文献   

10.
11.
12.
13.
miR-21: a small multi-faceted RNA   总被引:1,自引:0,他引:1  
More than 1000 microRNAs (miRNAs) are expressed in human cells, some tissue or cell type specific, others considered as house-keeping molecules. Functions and direct mRNA targets for some miRNAs have been relatively well studied over the last years. Every miRNA potentially regulates the expression of numerous protein-coding genes (tens to hundreds), but it has become increasingly clear that not all miRNAs are equally important; diverse high-throughput screenings of various systems have identified a limited number of key functional miRNAs over and over again. Particular miRNAs emerge as principal regulators that control major cell functions in various physiological and pathophysiological settings. Since its identification 3 years ago as the miRNA most commonly and strongly up-regulated in human brain tumour glioblastoma [ 1 ], miR-21 has attracted the attention of researchers in various fields, such as development, oncology, stem cell biology and aging, becoming one of the most studied miRNAs, along with let-7, miR-17–92 cluster ('oncomir-1'), miR-155 and a few others. However, an miR-21 knockout mouse has not yet been generated, and the data about miR-21 functions in normal cells are still very limited. In this review, we summarise the current knowledge of miR-21 functions in human disease, with an emphasis on its regulation, oncogenic role, targets in human cancers, potential as a disease biomarker and novel therapeutic target in oncology.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号