首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Analyses of gaps in protected area (PA) coverage of species distributions have been carried out extensively for the past two decades, aiming to better locate new PAs and conserve species. In this study, progress to close gaps in the protection of the Important Bird Areas (IBAs) of Tanzania is assessed between 2002 and 2009, with a detailed GIS analysis from 2007 to 2009. Remaining gaps are ranked according to biological factors such as numbers of red list and restricted range avian species and social pressures such as human population, agriculture and density of the road network. Results show that there has been a 5.3% increase (7615.1 km2) in protection of IBAs between 2007 and 2009. Of the 27 remaining IBA protection gaps, three are of high, nine of medium and fifteen of low priority for action. The current IBA ‘gap area’ of 17,133.3 km2 contains around 26% forest, 13% shrubland, 9% grassland, 36% wetland and 12% agricultural land. This analysis provides a simple template for defining where further action to protect remaining IBA sites in Tanzania would lead to enhanced conservation of avian biodiversity in that country and provides a methodology for analysis leading to conservation action elsewhere in Africa.  相似文献   

2.
The spatial extent of marine and terrestrial protected areas (PAs) was among the most intensely debated issues prior to the decision about the post-2020 Global Biodiversity Framework (GBF) of the Convention on Biological Diversity. Positive impacts of PAs on habitats, species diversity and abundance are well documented. Yet, biodiversity loss continues unabated despite efforts to protect 17% of land and 10% of the oceans by 2020. This casts doubt on whether extending PAs to 30%, the agreed target in the Kunming-Montreal GBF, will indeed achieve meaningful biodiversity benefits. Critically, the focus on area coverage obscures the importance of PA effectiveness and overlooks concerns about the impact of PAs on other sustainability objectives. We propose a simple means of assessing and visualising the complex relationships between PA area coverage and effectiveness and their effects on biodiversity conservation, nature-based climate mitigation and food production. Our analysis illustrates how achieving a 30% PA global target could be beneficial for biodiversity and climate. It also highlights important caveats: (i) achieving lofty area coverage objectives alone will be of little benefit without concomitant improvements in effectiveness, (ii) trade-offs with food production particularly for high levels of coverage and effectiveness are likely and (iii) important differences in terrestrial and marine systems need to be recognized when setting and implementing PA targets. The CBD's call for a significant increase in PA will need to be accompanied by clear PA effectiveness goals to reduce and revert dangerous anthropogenic impacts on socio-ecological systems and biodiversity.  相似文献   

3.
Protected areas (PAs) are the main instrument for biodiversity conservation, which has triggered the development of numerous indicators and assessments on their coverage, performance and efficiency. The connectivity of the PA networks at a global scale has however been much less explored; previous studies have either focused on particular regions of the world or have only considered some types of PAs.Here we present, and globally assess, ProtConn, an indicator of PA connectivity that (i) quantifies the percentage of a study region covered by protected connected lands, (ii) can be partitioned in several components depicting different categories of land (unprotected, protected or transboundary) through which movement between protected locations may occur, (iii) is easy to communicate, to compare with PA coverage and to use in the assessment of global targets for PA systems.We apply ProtConn to evaluate the connectivity of the PA networks in all terrestrial ecoregions of the world as of June 2016, considering a range of median dispersal distances (1–100 km) encompassing the dispersal abilities of the large majority of terrestrial vertebrates.We found that 9.3% of the world is covered by protected connected lands (average for all the world’s ecoregions) for a reference dispersal distance of 10 km, increasing up to 11.7% for the largest dispersal distance considered of 100 km. These percentages are considerably smaller than the global PA coverage of 14.7%, indicating that the spatial arrangement of PAs is only partially successful in ensuring connectivity of protected lands. The connectivity of PAs largely differed across ecoregions. Only about a third of the world’s ecoregions currently meet the Aichi Target of having 17% of the terrestrial realm covered by well-connected systems of PAs. Finally, our findings suggest that PAs with less strict management objectives (allowing the sustainable use of resources) may play a fundamental role in upholding the connectivity of the PA systems.Our analyses and indicator make it possible to identify where on the globe additional efforts are most needed in expanding or reinforcing the connectivity of PA systems, and can be also used to assess whether newly designated sites provide effective connectivity gains in the PA system by acting as corridors or stepping stones between other PAs. The results of the ProtConn indicator are available, together with a suite of other global PA indicators, in the Digital Observatory for Protected Areas of the Joint Research Centre of the European Commission.  相似文献   

4.
5.
For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use a published occurrence database of 271 species from the cacao family (Malvaceae) to explore how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw georeferenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including collecting specimens inside PAs in less collected areas, and the delimitation of areas for protection in more known areas.  相似文献   

6.
Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives.  相似文献   

7.
Global commitments to halt biodiversity decline mean that it is essential to monitor species'' extinction risk. However, the work required to assess extinction risk is intensive. We demonstrate an alternative approach to monitoring extinction risk, based on the response of species to external conditions. Using retrospective International Union for Conservation of Nature Red List assessments, we classify transitions in the extinction risk of 497 mammalian carnivores and ungulates between 1975 and 2013. Species that moved to lower Red List categories, or remained Least Concern, were classified as ‘lower risk''; species that stayed in a threatened category, or moved to a higher category of risk, were classified as ‘higher risk''. Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species biology) and external conditions (human pressure, distribution state and conservation interventions). The model correctly classified up to 90% of all transitions and revealed complex interactions between variables, such as protected areas (PAs) versus human impact. The most important predictors were: past extinction risk, PA extent, geographical range size, body size, taxonomic family and human impact. Our results suggest that monitoring a targeted set of metrics would efficiently identify species facing a higher risk, and could guide the allocation of resources between monitoring species'' extinction risk and monitoring external conditions.  相似文献   

8.
Protected areas (PAs) are at the forefront of conservation efforts, and yet despite considerable progress towards the global target of having 17% of the world''s land area within protected areas by 2020, biodiversity continues to decline. The discrepancy between increasing PA coverage and negative biodiversity trends has resulted in renewed efforts to enhance PA effectiveness. The global conservation community has conducted thousands of assessments of protected area management effectiveness (PAME), and interest in the use of these data to help measure the conservation impact of PA management interventions is high. Here, we summarize the status of PAME assessment, review the published evidence for a link between PAME assessment results and the conservation impacts of PAs, and discuss the limitations and future use of PAME data in measuring the impact of PA management interventions on conservation outcomes. We conclude that PAME data, while designed as a tool for local adaptive management, may also help to provide insights into the impact of PA management interventions from the local-to-global scale. However, the subjective and ordinal characteristics of the data present significant limitations for their application in rigorous scientific impact evaluations, a problem that should be recognized and mitigated where possible.  相似文献   

9.
Efficient management of protected areas (PAs) is important to ensure conservation and long-term sustenance of threatened species. It is therefore essential to understand the vulnerability of PAs in a multi-pronged approach by considering the cumulative effects of species, climatic, and anthropogenic attributes. We assessed the overall vulnerability of PAs in the Central Indian Highlands (CIH), which is a landscape of high biodiversity value. Over 81% of PAs experienced medium to high vulnerability due to anthropogenic pressures, and 68.75% of PAs faced medium to high vulnerability due to climate change and conservation status of species within the PA. Our categorization of PAs revealed that 50% of PAs were vulnerable to all 3 attributes. Further, there was a strong correlation between species and anthropogenic vulnerability indices in the PAs of the CIH landscape. Our results may help local policy makers in prioritizing the optimal and cost-effective conservation management of existing PAs, which can be extended for cost-effectiveness and efficient resource allocation of PAs, through this multipronged approach, beyond the CIH landscape.  相似文献   

10.
While the protected area (PA) covers >15% of the planet's terrestrial land area and continues to expand, factors determining its effectiveness in conserving endangered species are being debated. We investigated the links between direct anthropogenic pressures, socioeconomic settings, and the coverage of vertebrate taxa by China's PA network, and indicated that high socioeconomic status and low levels of human pressure correlate with high species coverage, with threatened mammals more effectively conserved than reptiles or amphibians. Positive links between conservation outcomes and socioeconomic progress appear linked to local livelihood improvements triggering positive perceptions of local PAs—aided further by ecological compensation and tourism schemes introduced in wealthy areas and reinforced by continued positive conservation outcomes. Socioeconomic development of China's less developed regions might assist regional PA efficiency and achievement of the Kunming-Montreal Global Biodiversity Framework, while also addressing potential shortcomings from an insufficient past focus on socioeconomic impacts for biodiversity conservation.  相似文献   

11.
The African protected area (PA) network has the potential to act as a set of functionally interconnected patches that conserve meta-populations of mammal species, but individual PAs are vulnerable to habitat change which may disrupt connectivity and increase extinction risk. Individual PAs have different roles in maintaining connectivity, depending on their size and location. We measured their contribution to network connectivity (irreplaceability) for carnivores and ungulates and combined it with a measure of vulnerability based on a 30-year trend in remotely sensed vegetation cover (Normalized Difference Vegetation Index). Highly irreplaceable PAs occurred mainly in southern and eastern Africa. Vegetation cover change was generally faster outside than inside PAs and particularly so in southern Africa. The extent of change increased with the distance from PAs. About 5% of highly irreplaceable PAs experienced a faster vegetation cover loss than their surroundings, thus requiring particular conservation attention. Our analysis identified PAs at risk whose isolation would disrupt the connectivity of the PA network for large mammals. This is an example of how ecological spatial modelling can be combined with large-scale remote sensing data to investigate how land cover change may affect ecological processes and species conservation.  相似文献   

12.
Terrestrial protected areas (PAs) are cornerstones of global biodiversity conservation. Their efficacy in terms of maintaining biodiversity is, however, much debated. Studies to date have been unable to provide a general answer as to PA conservation efficacy because of their typically restricted geographic and/or taxonomic focus, or qualitative approaches focusing on proxies for biodiversity, such as deforestation. Given the rarity of historical data to enable comparisons of biodiversity before/after PA establishment, many smaller scale studies over the past 30 years have directly compared biodiversity inside PAs to that of surrounding areas, which provides one measure of PA ecological performance. Here we use a meta-analysis of such studies (N = 86) to test if PAs contain higher biodiversity values than surrounding areas, and so assess their contribution to determining PA efficacy. We find that PAs generally have higher abundances of individual species, higher assemblage abundances, and higher species richness values compared with alternative land uses. Local scale studies in combination thus show that PAs retain more biodiversity than alternative land use areas. Nonetheless, much variation is present in the effect sizes, which underscores the context-specificity of PA efficacy.  相似文献   

13.
Climate change threatens European conservation areas   总被引:4,自引:0,他引:4  
Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58?±?2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63?±?2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P?相似文献   

14.
Aim We aimed to complete the first systematic assessment of extinction risk based on projected population declines derived from spatially explicit habitat projections for any taxonomic group at a regional scale, to use the outputs to ascertain the efficacy of an existing protected area network in covering species of conservation concern, and identify gaps therein. Location This study focused on Amazonia; an area of exceptional biodiversity, currently experiencing the highest absolute rate of forest loss globally but where the proportion of species assessed as ‘threatened’ on the International Union for the Conservation of Nature (IUCN) Red List in the region is below global averages. Methods For all forest‐dependent Amazonian bird species (814), we revised extinction risk estimates by combining data from a spatially explicit deforestation model with generation length estimates. By overlaying distribution maps for these revised threatened species, we identified crisis areas (areas of projected deforestation supporting the highest numbers of threatened species), refugia (areas projected to retain forest supporting the highest numbers of threatened species) and areas of high irreplaceability: short‐ and long‐term priorities for new protected areas (PAs). Results The number of species qualifying as threatened rose substantially from 24 (3%) to 64–92 (8–11%). Areas of particular concern are the crisis and highly irreplaceable areas within the ‘arc of deforestation’ in the southern Brazilian Amazon states of Rondônia, Mato Grosso and Pará. Main conclusions Through a novel application of the IUCN Red List criteria, we present a spatially accurate rendering of the extinction risks of Amazonian birds. Important areas in the Amazon are not secure. We identify priorities for expansion of the PAs network and key locations where protection should be enforced. We recommend a collaborative approach employing our methods to repeat this process for other taxonomic groups.  相似文献   

15.
Aim  To examine the impacts of climate change on endemic birds, which are of global significance for conservation, on a continent with few such assessments. We specifically assess projected range changes in relation to the Important Bird Areas (IBAs) network and assess the possible consequences for conservation.
Location  South Africa, Lesotho and Swaziland.
Methods  The newly emerging ensemble modelling approach is used with 50 species, four climate change models for the period 2070–2100 and eight bioclimatic niche models in the statistical package biomod . Model evaluation is done using the receiver operating characteristic and the recently introduced true skill statistic. Future projections are made considering two extreme assumptions: species have full dispersal ability and species have no dispersal ability. A consensus forecast is identified using principal components analysis. This forecast is interpreted in terms of the IBA network. An irreplaceability analysis is used to highlight priority IBAs for conservation attention in terms of climate change.
Results  The majority of species (62%) are predicted to lose climatically suitable space. Five species lose at least 85% of their climatically suitable space. Many IBAs lose species (41%; 47 IBAs) and show high rates of species turnover of more than 50% (77%; 95 IBAs). Highly irreplaceable regions for endemic species become highly localized under climate change, meaning that the endemic species analysed here experience similar range contractions to maintain climate niches.
Main conclusions  The South African IBAs network is likely to become less effective for conserving endemic birds under climate change. The irreplaceability analysis identified key refugia for endemic species under climate change, but many of these areas are not currently IBAs. In addition, many of these high-priority areas that are IBAs fall outside the current formal protected areas network.  相似文献   

16.
Ecological networks (ENs) of indigenous vegetation among commercial forestry plantations have been implemented to offset the negative effects of the alien plantation trees on local biodiversity. However, it is not known whether these ENs are equivalent to protected areas (PAs) in terms of their grassland biodiversity. To address this knowledge gap, we investigated how well grassland plant species richness and composition in an EN corresponds to similar habitats in an adjacent PA. This took place in grasslands on the east coast of South Africa, and was done at four paired sites using ten replicates at each of the eight sites. Pairwise comparisons (EN vs. PA) of plant species composition yielded statistically smaller differences than comparisons between different pairs of sites within either the EN or PA, illustrating considerable turnover of species whether or not they were in an EN or PA. Overall, there were fewer plant species in the EN for three of the four pairs of sites. Nevertheless, plant species composition was similar in each pair of sites. The grassland EN was also characterized by greater maximum vegetation height and less green vegetation cover. When differences between the EN and a PA were viewed against the natural variation of abiotic and biotic conditions across the landscape, they were small. We conclude that ENs of natural habitat contribute substantially to biodiversity conservation in transformed, commercially-productive landscapes, are almost as good as PAs for maintaining grassland plant diversity.  相似文献   

17.
Evaluating the effectiveness of protected areas for sustaining biodiversity is crucial to achieving conservation outcomes. While studies of effectiveness have improved our understanding of protected‐area design and management, few investigations (< 5%) have quantified the ecological performance of reserves for conserving species. Here, we present an empirical evaluation of protected‐area effectiveness using long‐term measures of a vulnerable assemblage of species. We compare forest and woodland bird diversity in the Australian Capital Territory over 11 yr on protected and unprotected areas located in temperate eucalypt woodland and matched by key habitat attributes. We examine separately the response of birds to protected areas established prior to 1995 and after 1995 when fundamental changes were made to regional conservation policy. Bird diversity was measured in richness, occurrence of vulnerable species, individual species trajectories and functional trait groups. We found that protected areas were effective in maintaining woody vegetation cover in the study region, but were less effective in the protection of the target bird species assemblage. Protected areas were less species rich than unprotected areas, with significant declines in richness across sites protected prior to 1995. Small, specialised and vulnerable species showed stronger associations with unprotected areas than protected areas. Our findings indicate that recently established reserves (post‐1995) are performing similarly to unprotected woodland areas in terms of maintaining woodland bird diversity, and that both of these areas are more effective in the conservation of woodland bird populations than reserves established prior to 1995. We demonstrate that the conservation value of protected areas is strongly influenced by the physical characteristics, as well as the landscape context, of a given reserve and can diminish with changes in surrounding land use over time. Both protected areas and off‐reserve conservation schemes have important roles to play in securing species populations.  相似文献   

18.
Protected areas are important in conserving the rapid decline of biodiversity in the Anthropocene. Yet uncertainty persists whether protected areas will continue to meet conservation goals if climate change causes community or ecosystem shifts. Previous research has proven equivocal with some studies finding protected areas fail conservation objectives and others finding objectives are largely met. The effectiveness of protected area systems within tropical Asia and for insects are particularly under-studied. Using species distribution modeling of 68 butterfly species (15,346 locality records), we carried out an evaluation of the effectiveness of protected areas in Hong Kong, one of the most well-covered (40% land area) protected area systems in the Asian tropics, and projected how the ability to protect biodiversity would change under different climate change scenarios and different conservation target schemes. Under climate change, 15–37% of the modeled species in 2000 were projected to become extirpated by 2050. Under all conservation target schemes, the proportion of species unprotected increased or leveled, by up to as much as 7%. If buffer grids were considered as unprotected, the increase in these gap species was much greater, by up to as much as 22%. These results together indicate that under climate change, the effectiveness of protected areas for butterflies in Hong Kong is likely to decrease despite the territory’s relatively high proportion of protected area coverage. We also highlight here the importance of the fortification of partly protected areas in mediating biodiversity loss under the impacts of global change.  相似文献   

19.
Climate change is not only a major threat to biodiversity, it is also a big challenge to the development of conservation strategies. Scientists and practitioners need to select or avoid areas at greatest risk for species protection, i.e., acting in a proactive or a reactive manner. This proactive/reactive dichotomy takes a particular formulation under the likely changes in climate. Selecting for low-risk areas (usually referred to as climate refugia) is supposed to protect more species with a greater guarantee of their long-term persistence. As a consequence, populations at greatest risk are left unprotected and probably committed to extinction. On the other hand, managing species in high-risk areas is more expensive than setting aside areas of climate refugia and encompasses a set of uncertainties, which makes highly-threatened species more costly and difficult to save. Here, we combine ecological niche models and metrics of climate change to develop spatial conservation schemes for mammals in the Brazilian Amazon. These schemes efficiently identify networks of high-risk and refugia priority areas within species current and future distributions, while complementing the protection already achieved by the Amazon’s network of protected areas (PAs). We found that, on average, 25% of mammal distribution is already represented in the established network of PAs. Also, 26% of high-risk and 17% of refugia priority areas overlap with indigenous lands. In addition, species distributions were found mostly in high-risk, compared to in refugia priority areas. We highlight that the strategy to be employed does not necessarily should be binary and a mix of both strategies would guarantee the protection of a larger number of species.  相似文献   

20.
Over the last four decades the world has been losing biodiversity at an alarming rate despite the increasing number of protected areas (PAs). Certified forest management may complement the role of PAs in protecting biodiversity. Forest certification aims to promote sustainable forest management and to maintain or enhance the conservation value of certified forests. The area of forest under certified forest management has grown quickly over the past decade. Forest Stewardship Council (FSC) certification, for example, currently covers 148 million hectares, i.e., 3.7 % of the world’s forests. In spite of such increase there is, however, a dearth of information on how forest certification is related to biodiversity. In this study we assessed if FSC certification is being applied in high biodiversity areas in cork oak savannas in Portugal by comparing biodiversity values of certified and non-certified areas for birds, reptiles and amphibians. We calculated the relative species richness and irreplaceability value for each group of species in certified and non-certified areas and compared them using randomization tests. The biodiversity value of certified areas was not significantly greater than that of non-certified areas. Since FSC certification is expanding quickly in cork oak savannas it is important to consider the biodiversity value of these areas during this process. Prioritizing areas of high biodiversity value would enhance the conservation value of forest certification and facilitate integrating certification with other conservation initiatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号