首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
PTEN is mutated at high frequency in many primary human cancers and several familial cancer predisposition disorders. Activation of AKT is a common event in tumors in which the PTEN gene has been inactivated. We previously showed that deletion of the murine Pten gene in embryonic stem (ES) cells led to increased phosphatidylinositol triphosphate (PIP(3)) accumulation, enhanced entry into S phase, and better cell survival. Since PIP(3) controls multiple signaling molecules, it was not clear to what degree the observed phenotypes were due to deregulated AKT activity. In this study, we mutated Akt-1 in Pten(-/-) ES cells to directly assess the role of AKT-1 in PTEN-controlled cellular processes, such as cell proliferation, cell survival, and tumorigenesis in nude mice. We showed that AKT-1 is one of the major downstream effectors of PTEN in ES cells and that activation of AKT-1 is required for both the cell survival and cell proliferation phenotypes observed in Pten(-/-) ES cells. Deletion of Akt-1 partially reverses the aggressive growth of Pten(-/-) ES cells in vivo, suggesting that AKT-1 plays an essential role in PTEN-controlled tumorigenesis.  相似文献   

2.
PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.  相似文献   

3.
PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin   总被引:13,自引:0,他引:13  
Li G  Hu Y  Huo Y  Liu M  Freeman D  Gao J  Liu X  Wu DC  Wu H 《The Journal of biological chemistry》2006,281(16):10663-10668
Tumor suppressor gene PTEN is highly mutated in a wide variety of human tumors. To identify unknown targets or signal transduction pathways that are regulated by PTEN, microarray analysis was performed to compare the gene expression profiles of Pten null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts. Expression of a heparin binding growth factor, pleiotrophin (Ptn), was found to be up-regulated in Pten-/- MEFs as well as Pten null mammary tumors. Further experiments revealed that Ptn expression is regulated by the PTEN-PI3K-AKT pathway. Knocking down the expression of Ptn by small interfering RNA resulted in the reduction of Akt and GSK-3beta phosphorylation and suppression of the growth and the tumorigenicity of Pten null MEFs. Our results suggest that PTN participates in tumorigenesis caused by PTEN loss and PTN may be a potential target for anticancer therapy, especially for those tumors with PTEN deficiencies.  相似文献   

4.
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family-interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1(-/-) fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.  相似文献   

5.
Recruiting Akt to the membrane-bound phosphatidylinositol (3,4,5) trisphosphate (PIP3) is required for Akt activation. While PI3 kinase (PI3K) produces PIP3, PTEN dephosphorylates the 3-position phosphate from PIP3, thereby directly inhibiting Akt activation. PTEN is the dominant PIP3 phosphatase, as knockdown of PTEN results in increases in Akt activation in mice. The PTEN tumor suppressor gene is frequently mutated in a variety of human cancers, consistent with an inverse correlation between levels of the PTEN protein and Akt activation. We have examined PTEN expression and Akt activation in 35 primary clear cell renal cell carcinomas RCCs (ccRCCs) and 9 papillary RCCs (pRCCs) and their respective non-tumor kidney tissues. The PTEN protein was reduced in 16 ccRCCs (16/35=45.7%) and 8 pRCCs (8/9=88.9%). In these RCCs, 25.0% (4/16) of ccRCCs and 25.0% (2/8) of pRCCs expressed elevated Akt activation. 19 ccRCCc (19/35=54.3%) expressed comparable or higher levels of PTEN. Of these ccRCCs, 31.6% (6/19) showed increases in Akt activation. As PTEN dominantly inhibits Akt activation, the coexistence of high levels of the PTEN protein with enhanced Akt activation suggests the existence of novel mechanisms which attenuate PTEN function in ccRCC. These mechanisms may reduce PTEN function or increase PIP3 production.  相似文献   

6.
Chondrocytes within the growth plates acclimatize themselves to a variety of stresses that might otherwise disturb cell fate. The tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) has been implicated in the maintenance of cell homeostasis. However, the functions of PTEN in regulating chondrocytic adaptation to stresses remain largely unknown. In this study, we have created chondrocyte-specific Pten knockout mice (Pten(co/co);Col2a1-Cre) using the Cre-loxP system. Following AKT activation, Pten mutant mice exhibited dyschondroplasia resembling human enchondroma. Cartilaginous nodules originated from Pten mutant resting chondrocytes that suffered from impaired proliferation and differentiation, and this was coupled with enhanced endoplasmic reticulum (ER) stress. We further found that ER stress in Pten mutant chondrocytes only occurred under hypoxic stress, characterized by an upregulation of unfolded protein response-related genes as well as an engorged and fragmented ER in which collagens were trapped. An upregulation of hypoxia-inducible factor 1alpha (HIF1alpha) and downstream targets followed by ER stress induction was also observed in Pten mutant growth plates and in cultured chondrocytes, suggesting that PI3K/AKT signaling modulates chondrocytic adaptation to hypoxic stress via regulation of the HIF1alpha pathway. These data demonstrate that PTEN function in chondrocytes is essential for their adaptation to stresses and for the inhibition of dyschondroplasia.  相似文献   

7.
Despite the fact that epithelial ovarian cancers are the leading cause of death from gynecological cancer, very little is known about the pathophysiology of the disease. Mutations in the WNT and PI3K pathways are frequently observed in the human ovarian endometrioid adenocarcinomas (OEAs). However, the role of WNT/β-catenin and PTEN/AKT signaling in the etiology and/or progression of this disease is currently unclear. In this report we show that mice with a gain-of-function mutation in β-catenin that leads to dysregulated nuclear accumulation of β-catenin expression in the ovarian surface epithelium (OSE) cells develop indolent, undifferentiated tumors with both mesenchymal and epithelial characteristics. Combining dysregulated β-catenin with homozygous deletion of PTEN in the OSE resulted in development of significantly more aggressive tumors, which was correlated with inhibition of p53 expression and cellular senescence. Induced expression of both mTOR kinase, a master regulator of proliferation, and phosphorylation of its downstream target, S6Kinase was also observed in both the indolent and aggressive mouse tumors, as well as in human OEA with nuclear β-catenin accumulation. Ectopic allotransplants of the mouse ovarian tumor cells with a gain-of-function mutation in β-catenin and PTEN deletion developed into tumors with OEA histology, the growth of which were significantly inhibited by oral rapamycin treatment. These studies demonstrate that rapamycin might be an effective therapeutic for human ovarian endometrioid patients with dysregulated Wnt/β-catenin and Pten/PI3K signaling.  相似文献   

8.
The Aurora-A kinase gene is frequently amplified and/or overexpressed in a variety of human cancers, leading to major efforts to develop therapeutic agents targeting this pathway. Here, we show that Aurora-A is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7 in a process that is regulated by GSK3β. Using a series of truncated Aurora-A proteins and site-directed mutagenesis, we identified distinct FBXW7 and GSK3β-binding sites in Aurora-A. Mutation of critical residues in either site substantially disrupts degradation of Aurora-A. Furthermore, we show that loss of Pten results in the stabilization of Aurora-A by attenuating FBXW7-dependent degradation of Aurora-A through the AKT/GSK3β pathway. Moreover, radiation-induced tumor latency is significantly shortened in Fbxw7(+/-)Pten(+/-) mice as compared with either Fbxw7(+/-) or Pten(+/-) mice, indicating that Fbxw7 and Pten appear to cooperate in suppressing tumorigenesis. Our results establish a novel posttranslational regulatory network in which the Pten and Fbxw7 pathways appear to converge on the regulation of Aurora-A level.  相似文献   

9.
PTEN, one of the most commonly mutated or lost tumor suppressors in human cancers, antagonizes signaling by the PI3K pathway. Mice with thymocyte-specific deletion of Pten rapidly develop peripheral lymphomas and autoimmunity, which may be caused by failed negative selection of thymocytes or from dysregulation of postthymic T cells. We induced conditional deletion of Pten from CD4 Th cells using a Cre knocked into the Tnfrsf4 (OX40) locus to generate OX40(Cre)Pten(f) mice. Pten-deficient Th cells proliferated more and produced greater concentrations of cytokines. The OX40(Cre)Pten(f) mice had a general increase in the number of lymphocytes in the lymph nodes, but not in the spleen. When transferred into wild-type (WT) mice, Pten-deficient Th cells enhanced anti-Listeria responses and the clearance of tumors under conditions in which WT T cells had no effect. Moreover, inflammatory responses were exaggerated and resolved later in OX40(Cre)Pten(f) mice than in WT mice. However, in contrast with models of thymocyte-specific Pten deletion, lymphomas and autoimmunity were not observed, even in older OX40(Cre)Pten(f) mice. Hence loss of Pten enhances Th cell function without obvious deleterious effects.  相似文献   

10.
The tumour suppressor gene PTEN (also called MMAC1 or TEP1) is somatically mutated in a variety of cancer types [1] [2] [3] [4]. In addition, germline mutation of PTEN is responsible for two dominantly inherited, related cancer syndromes called Cowden disease and Bannayan-Ruvalcaba-Riley syndrome [4]. PTEN encodes a dual-specificity phosphatase that inhibits cell spreading and migration partly by inhibiting integrin-mediated signalling [5] [6] [7]. Furthermore, PTEN regulates the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) by specifically dephosphorylating position 3 on the inositol ring [8]. We report here that the dauer formation gene daf-18 is the Caenorhabditis elegans homologue of PTEN. DAF-18 is a component of the insulin-like signalling pathway controlling entry into diapause and adult longevity that is regulated by the DAF-2 receptor tyrosine kinase and the AGE-1 PI 3-kinase [9]. Others have shown that mutation of daf-18 suppresses the life extension and constitutive dauer formation associated with daf-2 or age-1 mutants. Similarly, we show that inactivation of daf-18 by RNA-mediated interference mimics this suppression, and that a wild-type daf-18 transgene rescues the dauer defect. These results indicate that PTEN/daf-18 antagonizes the DAF-2-AGE-1 pathway, perhaps by catalyzing dephosphorylation of the PIP3 generated by AGE-1. These data further support the notion that mutations of PTEN contribute to the development of human neoplasia through an aberrant activation of the PI 3-kinase signalling cascade.  相似文献   

11.
PTEN, mutated in a variety of human cancers, is a dual specificity protein phosphatase and also possesses D3-phosphoinositide phosphatase activity on phosphatidylinositol 3,4,5-tris-phosphate (PIP(3)), a product of phosphatidylinositol 3-kinase. This PIP(3) phosphatase activity of PTEN contributes to its tumor suppressor function by inhibition of Akt kinase, a direct target of PIP(3). We have recently shown that Akt regulates PDGF-induced DNA synthesis in mesangial cells. In this study, we demonstrate that expression of PTEN in mesangial cells inhibits PDGF-induced Akt activation leading to reduction in PDGF-induced DNA synthesis. As a potential mechanism, we show that PTEN inhibits PDGF-induced protein tyrosine phosphorylation with concomitant dephosphorylation and inactivation of tyrosine phosphorylated and activated PDGF receptor. Recombinant as well as immunopurified PTEN dephosphorylates autophosphorylated PDGF receptor in vitro. Expression of phosphatase deficient mutant of PTEN does not dephosphorylate PDGF-induced tyrosine phosphorylated PDGF receptor. Rather its expression increases tyrosine phosphorylation of PDGF receptor. Furthermore, expression of PTEN attenuated PDGF-induced signal transduction including phosphatidylinositol 3-kinase and Erk1/2 MAPK activities. Our data provide the first evidence that PTEN is physically associated with platelet-derived growth factor (PDGF) receptor and that PDGF causes its dissociation from the receptor. Finally, we show that both the C2 and tail domains of PTEN contribute to binding to the PDGF receptor. These data demonstrate a novel aspect of PTEN function where it acts as an effector for the PDGF receptor function and negatively regulates PDGF receptor activation.  相似文献   

12.
In adipose tissue, insulin controls glucose and lipid metabolism through the intracellular mediators phosphatidylinositol 3-kinase and serine-threonine kinase AKT. Phosphatase and a tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, is hypothesized to inhibit the metabolic effects of insulin. Here we report the generation of mice lacking PTEN in adipose tissue. Loss of Pten results in improved systemic glucose tolerance and insulin sensitivity, associated with decreased fasting insulin levels, increased recruitment of the glucose transporter isoform 4 to the cell surface in adipose tissue, and decreased serum resistin levels. Mutant animals also exhibit increased insulin signaling and AMP kinase activity in the liver. Pten mutant mice are resistant to developing streptozotocin-induced diabetes. Adipose-specific Pten deletion, however, does not alter adiposity or plasma fatty acids. Our results demonstrate that in vivo PTEN is a potent negative regulator of insulin signaling and insulin sensitivity in adipose tissue. Furthermore, PTEN may be a promising target for nutritional and/or pharmacological interventions aimed at reversing insulin resistance.  相似文献   

13.
The tumor suppressor gene PTEN, which is frequently mutated in human cancers, encodes a lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3] and antagonizes phosphatidylinositol 3 kinase. Primordial germ cells (PGCs), which are the embryonic precursors of gametes, are the source of testicular teratoma. To elucidate the intracellular signaling mechanisms that underlie germ cell differentiation and proliferation, we have generated mice with a PGC-specific deletion of the Pten gene. Male mice that lacked PTEN exhibited bilateral testicular teratoma, which resulted from impaired mitotic arrest and outgrowth of cells with immature characters. Experiments with PTEN-null PGCs in culture revealed that these cells had greater proliferative capacity and enhanced pluripotent embryonic germ (EG) cell colony formation. PTEN appears to be essential for germ cell differentiation and an important factor in testicular germ cell tumor formation.  相似文献   

14.
Inactivation of the Rb-mediated G1 control pathway is a common event found in many types of human tumors. To test how the Rb pathway interacts with other pathways in tumor suppression, we characterized mice with mutations in both the cyclin-dependent kinase (CDK) inhibitor p18 Ink4c and the lipid phosphatase Pten, which regulates cell growth. The double mutant mice develop a wider spectrum of tumors, including prostate cancer in the anterior and dorsolateral lobes, with nearly complete penetrance and at an accelerated rate. The remaining wild-type allele of Pten was lost at a high frequency in Pten+/- cells but not in p18+/- Pten+/- or p18-/- Pten+/- prostate tumor cells, nor in other Pten+/- tumor cells, suggesting a tissue- and genetic background-dependent haploinsufficiency of Pten in tumor suppression. p18 deletion, CDK4 overexpression, or oncoviral inactivation of Rb family proteins caused activation of Akt/PKB that was recessive to the reduction of PTEN activity. We suggest that p18 and Pten cooperate in tumor suppression by constraining a positive regulatory loop between cell growth and cell cycle control pathways.  相似文献   

15.
Pten regulates neuronal arborization and social interaction in mice   总被引:11,自引:0,他引:11  
CNS deletion of Pten in the mouse has revealed its roles in controlling cell size and number, thus providing compelling etiology for macrocephaly and Lhermitte-Duclos disease. PTEN mutations in individuals with autism spectrum disorders (ASD) have also been reported, although a causal link between PTEN and ASD remains unclear. In the present study, we deleted Pten in limited differentiated neuronal populations in the cerebral cortex and hippocampus of mice. Resulting mutant mice showed abnormal social interaction and exaggerated responses to sensory stimuli. We observed macrocephaly and neuronal hypertrophy, including hypertrophic and ectopic dendrites and axonal tracts with increased synapses. This abnormal morphology was associated with activation of the Akt/mTor/S6k pathway and inactivation of Gsk3beta. Thus, our data suggest that abnormal activation of the PI3K/AKT pathway in specific neuronal populations can underlie macrocephaly and behavioral abnormalities reminiscent of certain features of human ASD.  相似文献   

16.
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.  相似文献   

17.
The Irs2 branch of the insulin/insulin-like growth factor signaling cascade activates the phosphatidylinositol 3-kinase --> Akt --> Foxo1 cascade in many tissues, including hepatocytes and pancreatic beta-cells. The 3'-lipid phosphatase Pten ordinarily attenuates this cascade; however, its influence on beta-cell growth or function is unknown. To determine whether decreased Pten expression could restore beta-cell function and prevent diabetes in Irs2(-/-) mice, we generated wild type or Irs2 knock-out mice that were haploinsufficient for Pten (Irs2(-/-)::Pten(+/-)). Irs2(-/-) mice develop diabetes by 3 months of age as beta-cell mass declined progressively until insulin production was lost. Pten insufficiency increased peripheral insulin sensitivity in wild type and Irs2(-/-) mice and increased Akt and Foxo1 phosphorylation in the islets. Glucose tolerance improved in the Pten(+/-) mice, although beta-cell mass and circulating insulin levels decreased. Compared with Irs2(-/-) mice, the Irs2(-/-)::Pten(+/-) mice displayed nearly normal glucose tolerance and survived without diabetes, because normal but small islets produced sufficient insulin until the mice died of lymphoproliferative disease at 12 months age. Thus, steps to enhance phosphatidylinositol 3-kinase signaling can promote beta-cell growth, function, and survival without the Irs2 branch of the insulin/insulin-like growth factor signaling cascade.  相似文献   

18.
Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.  相似文献   

19.
PTEN exerts its tumour suppressor function by dephosphorylating the phospholipid second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP(3)). Herein, we demonstrate that the PTEN-catalysed PIP(3) dephosphorylation reaction involves two-steps: (i) formation of a phosphoenzyme intermediate (PE) in which Cys-124 in the active site is thiophosphorylated, and (ii) hydrolysis of PE. For protein tyrosine- and dual-specificity phosphatases, catalysis requires the participation of a conserved active site aspartate as the general acid in Step 1. Its mutation to alanine severely limits PE formation. However, mutation of the homologous Asp-92 in PTEN does not significantly limit PE formation, indicating that Asp-92 does not act as the general acid. G129E is a common germline PTEN mutations found in Cowden syndrome patients. Mechanistic analysis reveals that this mutation inactivates PTEN by both significantly slowing down Step 1 and abolishing the ability to catalyse Step 2. Taken together, our results highlight the mechanistic similarities and differences between PTEN and the conventional protein phosphatases and reveal how a disease-associated mutation inactivates PTEN.  相似文献   

20.
Essential role for nuclear PTEN in maintaining chromosomal integrity   总被引:22,自引:0,他引:22  
Shen WH  Balajee AS  Wang J  Wu H  Eng C  Pandolfi PP  Yin Y 《Cell》2007,128(1):157-170
A broad spectrum of mutations in PTEN, encoding a lipid phosphatase that inactivates the P13-K/AKT pathway, is found associated with primary tumors. Some of these mutations occur outside the phosphatase domain, suggesting that additional activities of PTEN function in tumor suppression. We report a nuclear function for PTEN in controlling chromosomal integrity. Disruption of Pten leads to extensive centromere breakage and chromosomal translocations. PTEN was found localized at centromeres and physically associated with CENP-C, an integral component of the kinetochore. C-terminal PTEN mutants disrupt the association of PTEN with centromeres and cause centromeric instability. Furthermore, Pten null cells exhibit spontaneous DNA double-strand breaks (DSBs). We show that PTEN acts on chromatin and regulates expression of Rad51, which reduces the incidence of spontaneous DSBs. Our results demonstrate that PTEN plays a fundamental role in the maintenance of chromosomal stability through the physical interaction with centromeres and control of DNA repair. We propose that PTEN acts as a guardian of genome integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号