首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Globular proteins are assemblies of alpha-helices and beta-strands, interconnected by reverse turns and longer loops. Most short turns can be classified readily into a limited repertoire of discrete backbone conformations, but the physical-chemical determinants of these distinct conformational basins remain an open question. We investigated this question by exhaustive analysis of all backbone conformations accessible to short chain segments bracketed by either an alpha-helix or a beta-strand (i.e., alpha-segment-alpha, beta-segment-beta, alpha-segment-beta, and beta-segment-alpha) in a nine-state model. We find that each of these four secondary structure environments imposes its own unique steric and hydrogen-bonding constraints on the intervening segment, resulting in a limited repertoire of conformations. In greater detail, an exhaustive set of conformations was generated for short backbone segments having reverse-turn chain topology and bracketed between elements of secondary structure. This set was filtered, and only clash-free, hydrogen-bond-satisfied conformers having reverse-turn topology were retained. The filtered set includes authentic turn conformations, observed in proteins of known structure, but little else. In particular, over 99% of the alternative conformations failed to satisfy at least one criterion and were excluded from the filtered set. Furthermore, almost all of the remaining alternative conformations have close tolerances that would be too tight to accommodate side chains longer than a single beta-carbon. These results provide a molecular explanation for the observation that reverse turns between elements of regular secondary can be classified into a small number of discrete conformations.  相似文献   

2.
Mönnigmann M  Floudas CA 《Proteins》2005,61(4):748-762
The structure prediction of loops with flexible stem residues is addressed in this article. While the secondary structure of the stem residues is assumed to be known, the geometry of the protein into which the loop must fit is considered to be unknown in our methodology. As a consequence, the compatibility of the loop with the remainder of the protein is not used as a criterion to reject loop decoys. The loop structure prediction with flexible stems is more difficult than fitting loops into a known protein structure in that a larger conformational space has to be covered. The main focus of the study is to assess the precision of loop structure prediction if no information on the protein geometry is available. The proposed approach is based on (1) dihedral angle sampling, (2) structure optimization by energy minimization with a physically based energy function, (3) clustering, and (4) a comparison of strategies for the selection of loops identified in (3). Steps (1) and (2) have similarities to previous approaches to loop structure prediction with fixed stems. Step (3) is based on a new iterative approach to clustering that is tailored for the loop structure prediction problem with flexible stems. In this new approach, clustering is not only used to identify conformers that are likely to be close to the native structure, but clustering is also employed to identify far-from-native decoys. By discarding these decoys iteratively, the overall quality of the ensemble and the loop structure prediction is improved. Step (4) provides a comparative study of criteria for loop selection based on energy, colony energy, cluster density, and a hybrid criterion introduced here. The proposed method is tested on a large set of 3215 loops from proteins in the Pdb-Select25 set and to 179 loops from proteins from the Casp6 experiment.  相似文献   

3.
4.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
γ-转角是所有转角中数量位居第二的结构,约占整个蛋白质结构的3.4%。γ-转角有助于球形结构的形成,帮助肽链改变折叠方向,因此就更加有必要研究γ-转角的预测方法,从而提高蛋白质二级结构的预测精度。近几十年来关于γ-转角的预测方法越来越成熟,预测精度越来越高。本文综述了近年来对γ-转角研究进展,包括它的研究方法以及预测的准确度等。  相似文献   

6.
A novel method for predicting the secondary structures of proteins from amino acid sequence has been presented. The protein secondary structure seqlets that are analogous to the words in natural language have been extracted. These seqlets will capture the relationship between amino acid sequence and the secondary structures of proteins and further form the protein secondary structure dictionary. To be elaborate, the dictionary is organism-specific. Protein secondary structure prediction is formulated as an integrated word segmentation and part of speech tagging problem. The word-lattice is used to represent the results of the word segmentation and the maximum entropy model is used to calculate the probability of a seqlet tagged as a certain secondary structure type. The method is markovian in the seqlets, permitting efficient exact calculation of the posterior probability distribution over all possible word segmentations and their tags by viterbi algorithm. The optimal segmentations and their tags are computed as the results of protein secondary structure prediction. The method is applied to predict the secondary structures of proteins of four organisms respectively and compared with the PHD method. The results show that the performance of this method is higher than that of PHD by about 3.9% Q3 accuracy and 4.6% SOV accuracy. Combining with the local similarity protein sequences that are obtained by BLAST can give better prediction. The method is also tested on the 50 CASP5 target proteins with Q3 accuracy 78.9% and SOV accuracy 77.1%. A web server for protein secondary structure prediction has been constructed which is available at http://www.insun.hit.edu.cn:81/demos/biology/index.html.  相似文献   

7.
1 Introduction The prediction of protein structure and function from amino acid sequences is one of the most impor-tant problems in molecular biology. This problem is becoming more pressing as the number of known pro-tein sequences is explored as a result of genome and other sequencing projects, and the protein sequence- structure gap is widening rapidly[1]. Therefore, com-putational tools to predict protein structures are needed to narrow the widening gap. Although the prediction of three dim…  相似文献   

8.
Integral membrane proteins (of the α-helical class) are of central importance in a wide variety of vital cellular functions. Despite considerable effort on methods to predict the location of the helices, little attention has been directed toward developing an automatic method to pack the helices together. In principle, the prediction of membrane proteins should be easier than the prediction of globular proteins: there is only one type of secondary structure and all helices pack with a common alignment across the membrane. This allows all possible structures to be represented on a simple lattice and exhaustively enumerated. Prediction success lies not in generating many possible folds but in recognizing which corresponds to the native. Our evaluation of each fold is based on how well the exposed surface predicted from a multiple sequence alignment fits its allocated position. Just as exposure to solvent in globular proteins can be predicted from sequence variation, so exposure to lipid can be recognized by variable-hydrophobic (variphobic) positions. Application to both bacteriorhodopsin and the eukaryotic rhodopsin/opsin families revealed that the angular size of the lipid-exposed faces must be predicted accurately to allow selection of the correct fold. With the inherent uncertainties in helix prediction and parameter choice, this accuracy could not be guaranteed but the correct fold was typically found in the top six candidates. Our method provides the first completely automatic method that can proceed from a scan of the protein sequence databanks to a predicted three-dimensional structure with no intervention required from the investigator. Within the limited domain of the seven helix bundle proteins, a good chance can be given of selecting the correct structure. However, the limited number of sequences available with a corresponding known structure makes further characterization of the method difficult. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Adamczak R  Porollo A  Meller J 《Proteins》2005,59(3):467-475
Owing to the use of evolutionary information and advanced machine learning protocols, secondary structures of amino acid residues in proteins can be predicted from the primary sequence with more than 75% per-residue accuracy for the 3-state (i.e., helix, beta-strand, and coil) classification problem. In this work we investigate whether further progress may be achieved by incorporating the relative solvent accessibility (RSA) of an amino acid residue as a fingerprint of the overall topology of the protein. Toward that goal, we developed a novel method for secondary structure prediction that uses predicted RSA in addition to attributes derived from evolutionary profiles. Our general approach follows the 2-stage protocol of Rost and Sander, with a number of Elman-type recurrent neural networks (NNs) combined into a consensus predictor. The RSA is predicted using our recently developed regression-based method that provides real-valued RSA, with the overall correlation coefficients between the actual and predicted RSA of about 0.66 in rigorous tests on independent control sets. Using the predicted RSA, we were able to improve the performance of our secondary structure prediction by up to 1.4% and achieved the overall per-residue accuracy between 77.0% and 78.4% for the 3-state classification problem on different control sets comprising, together, 603 proteins without homology to proteins included in the training. The effects of including solvent accessibility depend on the quality of RSA prediction. In the limit of perfect prediction (i.e., when using the actual RSA values derived from known protein structures), the accuracy of secondary structure prediction increases by up to 4%. We also observed that projecting real-valued RSA into 2 discrete classes with the commonly used threshold of 25% RSA decreases the classification accuracy for secondary structure prediction. While the level of improvement of secondary structure prediction may be different for prediction protocols that implicitly account for RSA in other ways, we conclude that an increase in the 3-state classification accuracy may be achieved when combining RSA with a state-of-the-art protocol utilizing evolutionary profiles. The new method is available through a Web server at http://sable.cchmc.org.  相似文献   

11.
It has been many years since position-specific residue preference around the ends of a helix was revealed. However, all the existing secondary structure prediction methods did not exploit this preference feature, resulting in low accuracy in predicting the ends of secondary structures. In this study, we collected a relatively large data set consisting of 1860 high-resolution, non-homology proteins from the PDB, and further analyzed the residue distributions around the ends of regular secondary structures. It was found that there exist position-specific residue preferences (PSRP) around the ends of not only helices but also strands. Based on the unique features, we proposed a novel strategy and developed a tool named E-SSpred that treats the secondary structure as a whole and builds models to predict entire secondary structure segments directly by integrating relevant features. In E-SSpred, the support vector machine (SVM) method is adopted to model and predict the ends of helices and strands according to the unique residue distributions around them. A simple linear discriminate analysis method is applied to model and predict entire secondary structure segments by integrating end-prediction results, tri-peptide composition, and length distribution features of secondary structures, as well as the prediction results of the most famous program PSIPRED. The results of fivefold cross-validation on a widely used data set demonstrate that the accuracy of E-SSpred in predicting ends of secondary structures is about 10% higher than PSIPRED, and the overall prediction accuracy (Q(3) value) of E-SSpred (82.2%) is also better than PSIPRED (80.3%). The E-SSpred web server is available at http://bioinfo.hust.edu.cn/bio/tools/E-SSpred/index.html.  相似文献   

12.
Accurately predicted protein secondary structure provides useful information for target selection, to analyze protein function and to predict higher dimensional structure. Existing research shows that more data + refined search = better prediction. We analyze relation between the prediction accuracy and another crucial factor, the protein size. Empirical tests performed with two secondary structure predictors on a large set of high-resolution, non-redundant proteins show that the average accuracies for small proteins (<100 residues) equal 73% and 54% for alpha-helices and beta-strands, respectively. The alpha-helix/beta-strand accuracies for very large proteins (>300 residues) equal 77%/68%, respectively. Similarly, the tests with three secondary structure content predictors show that the prediction errors for the small/very large proteins equal 0.13/0.09 and 0.09/0.06 for alpha-helix and beta-strand content, respectively. Our tests confirm that the secondary structure/content predictions for the very large proteins are characterized statistically significantly better quality than prediction for the small proteins. This is in contrast with the tertiary structure predictions in which higher accuracy is obtained for smaller proteins.  相似文献   

13.
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on the dictionary of secondary structure prediction (DSSP)-generated secondary structure for 408 selected nonhomologous proteins. To the amino acid triplets which are not found in the selected dataset, a DP value of zero is assigned with respect to the secondary structural elements of proteins. The total number of parameters generated is 15,432, in the possible parameters of 25,260. Deviation parameter is complete with respect to amino acid singlets, doublets, and partially complete with respect to amino acid triplets. These generated parameters were used to predict secondary structural elements from amino acid sequence. The secondary structure predicted by our method (SSPDP) was compared with that of single sequence (NNPREDICT) and multiple sequence (PHD) methods. The average value of the percentage of prediction accuracy for αhelix by SSPDP, NNPREDICT and PHD methods was found to be 57%, 44% and 69% respectively for the proteins in the selected dataset. For Β-strand the prediction accuracy is found to be 69%, 21% and 53% respectively by SSPDP, NNPREDICT and PHD methods. This clearly indicates that the secondary structure prediction by our method is as good as PHD method but much better than NNPREDICT method.  相似文献   

15.
Kuhn M  Meiler J  Baker D 《Proteins》2004,54(2):282-288
Beta-sheet proteins have been particularly challenging for de novo structure prediction methods, which tend to pair adjacent beta-strands into beta-hairpins and produce overly local topologies. To remedy this problem and facilitate de novo prediction of beta-sheet protein structures, we have developed a neural network that classifies strand-loop-strand motifs by local hairpins and nonlocal diverging turns by using the amino acid sequence as input. The neural network is trained with a representative subset of the Protein Data Bank and achieves a prediction accuracy of 75.9 +/- 4.4% compared to a baseline prediction rate of 59.1%. Hairpins are predicted with an accuracy of 77.3 +/- 6.1%, diverging turns with an accuracy of 73.9 +/- 6.0%. Incorporation of the beta-hairpin/diverging turn classification into the ROSETTA de novo structure prediction method led to higher contact order models and somewhat improved tertiary structure predictions for a test set of 11 all-beta-proteins and 3 alphabeta-proteins. The beta-hairpin/diverging turn classification from amino acid sequences is available online for academic use (Meiler and Kuhn, 2003; www.jens-meiler.de/turnpred.html).  相似文献   

16.
A bona fide consensus prediction for the secondary and supersecondary structure of the serine–threonine specific protein phosphatases is presented. The prediction includes assignments of active site segments, an internal helix, and a region of possible 310 helical structure. An experimental structure for a member of this family of proteins should appear shortly, allowing this prediction to be evaluated. © 1995 Wiley-Liss, Inc.  相似文献   

17.
When experimental protein NMR data are too sparse to apply traditional structure determination techniques, de novo protein structure prediction methods can be leveraged. Here, we describe the incorporation of NMR restraints into the protein structure prediction algorithm BCL::Fold. The method assembles discreet secondary structure elements using a Monte Carlo sampling algorithm with a consensus knowledge‐based energy function. New components were introduced into the energy function to accommodate chemical shift, nuclear Overhauser effect, and residual dipolar coupling data. In particular, since side chains are not explicitly modeled during the minimization process, a knowledge based potential was created to relate experimental side chain proton–proton distances to Cβ–Cβ distances. In a benchmark test of 67 proteins of known structure with the incorporation of sparse NMR restraints, the correct topology was sampled in 65 cases, with an average best model RMSD100 of 3.4 ± 1.3 Å versus 6.0 ± 2.0 Å produced with the de novo method. Additionally, the correct topology is present in the best scoring 1% of models in 61 cases. The benchmark set includes both soluble and membrane proteins with up to 565 residues, indicating the method is robust and applicable to large and membrane proteins that are less likely to produce rich NMR datasets. Proteins 2014; 82:587–595. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
We describe a method that can thoroughly sample a protein conformational space given the protein primary sequence of amino acids and secondary structure predictions. Specifically, we target proteins with β‐sheets because they are particularly challenging for ab initio protein structure prediction because of the complexity of sampling long‐range strand pairings. Using some basic packing principles, inverse kinematics (IK), and β‐pairing scores, this method creates all possible β‐sheet arrangements including those that have the correct packing of β‐strands. It uses the IK algorithms of ProteinShop to move α‐helices and β‐strands as rigid bodies by rotating the dihedral angles in the coil regions. Our results show that our approach produces structures that are within 4–6 Å RMSD of the native one regardless of the protein size and β‐sheet topology although this number may increase if the protein has long loops or complex α‐helical regions. Proteins 2010. © Published 2009 Wiley‐Liss, Inc.  相似文献   

19.
We outline a set of strategies to infer protein function from structure. The overall approach depends on extensive use of homology modeling, the exploitation of a wide range of global and local geometric relationships between protein structures and the use of machine learning techniques. The combination of modeling with broad searches of protein structure space defines a “structural BLAST” approach to infer function with high genomic coverage. Applications are described to the prediction of protein–protein and protein–ligand interactions. In the context of protein–protein interactions, our structure‐based prediction algorithm, PrePPI, has comparable accuracy to high‐throughput experiments. An essential feature of PrePPI involves the use of Bayesian methods to combine structure‐derived information with non‐structural evidence (e.g. co‐expression) to assign a likelihood for each predicted interaction. This, combined with a structural BLAST approach significantly expands the range of applications of protein structure in the annotation of protein function, including systems level biological applications where it has previously played little role.  相似文献   

20.
Beta-turns are sites at which proteins change their overall chain direction, and they occur with high frequency in globular proteins. The Protein Data Bank has many instances of conformations that resemble beta-turns but lack the characteristic N-H(i) --> O=C(i - 3) hydrogen bond of an authentic beta-turn. Here, we identify potential hydrogen-bonded beta-turns in the coil library, a Web-accessible database utility comprised of all residues not in repetitive secondary structure, neither alpha-helix nor beta-sheet (http://www.roselab.jhu.edu/coil). In particular, candidate turns were identified as four-residue segments satisfying highly relaxed geometric criteria but lacking a strictly defined hydrogen bond. Such candidates were then subjected to a minimization protocol to determine whether slight changes in torsion angles are sufficient to shift the conformation into reference-quality geometry without deviating significantly from the original structure. This approach of applying constrained minimization to known structures reveals a substantial population of previously unidentified, stringently defined, hydrogen-bonded beta-turns. In particular, 33% of coil library residues were classified as beta-turns prior to minimization. After minimization, 45% of such residues could be classified as beta-turns, with another 8% in 3(10) helixes (which closely resemble type III beta-turns). Of the remaining coil library residues, 37% have backbone dihedral angles in left-handed polyproline II structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号