首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on the dictionary of secondary structure prediction (DSSP)-generated secondary structure for 408 selected non-homologous proteins. To the amino acid triplets which are not found in the selected dataset, a DP value of zero is assigned with respect to the secondary structural elements of proteins. The total number of parameters generated is 15,432, in the possible parameters of 25,260. Deviation parameter is complete with respect to amino acid singlets, doublets, and partially complete with respect to amino acid triplets. These generated parameters were used to predict secondary structural elements from amino acid sequence. The secondary structure predicted by our method (SSPDP) was compared with that of single sequence (NNPREDICT) and multiple sequence (PHD) methods. The average value of the percentage of prediction accuracy for a helix by SSPDP, NNPREDICT and PHD methods was found to be 57%, 44% and 69% respectively for the proteins in the selected dataset. For b-strand the prediction accuracy is found to be 69%, 21% and 53% respectively by SSPDP, NNPREDICT and PHD methods. This clearly indicates that the secondary structure prediction by our method is as good as PHD method but much better than NNPREDICT method.  相似文献   

2.
Lee S  Lee BC  Kim D 《Proteins》2006,62(4):1107-1114
Knowing protein structure and inferring its function from the structure are one of the main issues of computational structural biology, and often the first step is studying protein secondary structure. There have been many attempts to predict protein secondary structure contents. Previous attempts assumed that the content of protein secondary structure can be predicted successfully using the information on the amino acid composition of a protein. Recent methods achieved remarkable prediction accuracy by using the expanded composition information. The overall average error of the most successful method is 3.4%. Here, we demonstrate that even if we only use the simple amino acid composition information alone, it is possible to improve the prediction accuracy significantly if the evolutionary information is included. The idea is motivated by the observation that evolutionarily related proteins share the similar structure. After calculating the homolog-averaged amino acid composition of a protein, which can be easily obtained from the multiple sequence alignment by running PSI-BLAST, those 20 numbers are learned by a multiple linear regression, an artificial neural network and a support vector regression. The overall average error of method by a support vector regression is 3.3%. It is remarkable that we obtain the comparable accuracy without utilizing the expanded composition information such as pair-coupled amino acid composition. This work again demonstrates that the amino acid composition is a fundamental characteristic of a protein. It is anticipated that our novel idea can be applied to many areas of protein bioinformatics where the amino acid composition information is utilized, such as subcellular localization prediction, enzyme subclass prediction, domain boundary prediction, signal sequence prediction, and prediction of unfolded segment in a protein sequence, to name a few.  相似文献   

3.
1 Introduction The prediction of protein structure and function from amino acid sequences is one of the most impor-tant problems in molecular biology. This problem is becoming more pressing as the number of known pro-tein sequences is explored as a result of genome and other sequencing projects, and the protein sequence- structure gap is widening rapidly[1]. Therefore, com-putational tools to predict protein structures are needed to narrow the widening gap. Although the prediction of three dim…  相似文献   

4.
A novel method for predicting the secondary structures of proteins from amino acid sequence has been presented. The protein secondary structure seqlets that are analogous to the words in natural language have been extracted. These seqlets will capture the relationship between amino acid sequence and the secondary structures of proteins and further form the protein secondary structure dictionary. To be elaborate, the dictionary is organism-specific. Protein secondary structure prediction is formulated as an integrated word segmentation and part of speech tagging problem. The word-lattice is used to represent the results of the word segmentation and the maximum entropy model is used to calculate the probability of a seqlet tagged as a certain secondary structure type. The method is markovian in the seqlets, permitting efficient exact calculation of the posterior probability distribution over all possible word segmentations and their tags by viterbi algorithm. The optimal segmentations and their tags are computed as the results of protein secondary structure prediction. The method is applied to predict the secondary structures of proteins of four organisms respectively and compared with the PHD method. The results show that the performance of this method is higher than that of PHD by about 3.9% Q3 accuracy and 4.6% SOV accuracy. Combining with the local similarity protein sequences that are obtained by BLAST can give better prediction. The method is also tested on the 50 CASP5 target proteins with Q3 accuracy 78.9% and SOV accuracy 77.1%. A web server for protein secondary structure prediction has been constructed which is available at http://www.insun.hit.edu.cn:81/demos/biology/index.html.  相似文献   

5.
Huang JT  Tian J 《Proteins》2006,63(3):551-554
The significant correlation between protein folding rates and the sequence-predicted secondary structure suggests that folding rates are largely determined by the amino acid sequence. Here, we present a method for predicting the folding rates of proteins from sequences using the intrinsic properties of amino acids, which does not require any information on secondary structure prediction and structural topology. The contribution of residue to the folding rate is expressed by the residue's Omega value. For a given residue, its Omega depends on the amino acid properties (amino acid rigidity and dislike of amino acid for secondary structures). Our investigation achieves 82% correlation with folding rates determined experimentally for simple, two-state proteins studied until the present, suggesting that the amino acid sequence of a protein is an important determinant of the protein-folding rate and mechanism.  相似文献   

6.
Prediction of protein structural class from the amino acid sequence   总被引:9,自引:0,他引:9  
P Klein  C Delisi 《Biopolymers》1986,25(9):1659-1672
The multidimensional statistical technique of discriminant analysis is used to allocate amino acid sequences to one of four secondary structural classes: high α content, high β content, mixed α and β, low content of ordered structure. Discrimination is based on four attributes: estimates of percentages of α and β structures, and regular variations in the hydrophobic values of residues along the sequence, occurring with periods of 2 and 3.6 residues. The reliability of the method, estimated by classifying 138 sequences from the Brookhaven Protein Data Bank, is 80%, with no misallocations between α-rich and β-rich classes. The reliability can be increased to 84% by making no allocation for proteins classified with odds close to 1. Classification using previously developed secondary structural prediction methods is considerably less reliable, the best result being 64% obtained using predictions based on the Delphi method.  相似文献   

7.
The prediction of the secondary structure of a protein from its amino acid sequence is an important step towards the prediction of its three-dimensional structure. However, the accuracy of ab initio secondary structure prediction from sequence is about 80 % currently, which is still far from satisfactory. In this study, we proposed a novel method that uses binomial distribution to optimize tetrapeptide structural words and increment of diversity with quadratic discriminant to perform prediction for protein three-state secondary structure. A benchmark dataset including 2,640 proteins with sequence identity of less than 25 % was used to train and test the proposed method. The results indicate that overall accuracy of 87.8 % was achieved in secondary structure prediction by using ten-fold cross-validation. Moreover, the accuracy of predicted secondary structures ranges from 84 to 89 % at the level of residue. These results suggest that the feature selection technique can detect the optimized tetrapeptide structural words which affect the accuracy of predicted secondary structures.  相似文献   

8.
The identification and annotation of protein domains provides a critical step in the accurate determination of molecular function. Both computational and experimental methods of protein structure determination may be deterred by large multi-domain proteins or flexible linker regions. Knowledge of domains and their boundaries may reduce the experimental cost of protein structure determination by allowing researchers to work on a set of smaller and possibly more successful alternatives. Current domain prediction methods often rely on sequence similarity to conserved domains and as such are poorly suited to detect domain structure in poorly conserved or orphan proteins. We present here a simple computational method to identify protein domain linkers and their boundaries from sequence information alone. Our domain predictor, Armadillo (http://armadillo.blueprint.org), uses any amino acid index to convert a protein sequence to a smoothed numeric profile from which domains and domain boundaries may be predicted. We derived an amino acid index called the domain linker propensity index (DLI) from the amino acid composition of domain linkers using a non-redundant structure dataset. The index indicates that Pro and Gly show a propensity for linker residues while small hydrophobic residues do not. Armadillo predicts domain linker boundaries from Z-score distributions and obtains 35% sensitivity with DLI in a two-domain, single-linker dataset (within +/-20 residues from linker). The combination of DLI and an entropy-based amino acid index increases the overall Armadillo sensitivity to 56% for two domain proteins. Moreover, Armadillo achieves 37% sensitivity for multi-domain proteins, surpassing most other prediction methods. Armadillo provides a simple, but effective method by which prediction of domain boundaries can be obtained with reasonable sensitivity. Armadillo should prove to be a valuable tool for rapidly delineating protein domains in poorly conserved proteins or those with no sequence neighbors. As a first-line predictor, domain meta-predictors could yield improved results with Armadillo predictions.  相似文献   

9.
Amino acid propensities for secondary structures were used since the 1970s, when Chou and Fasman evaluated them within datasets of few tens of proteins and developed a method to predict secondary structure of proteins, still in use despite prediction methods having evolved to very different approaches and higher reliability. Propensity for secondary structures represents an intrinsic property of amino acid, and it is used for generating new algorithms and prediction methods, therefore our work has been aimed to investigate what is the best protein dataset to evaluate the amino acid propensities, either larger but not homogeneous or smaller but homogeneous sets, i.e., all-alpha, all-beta, alpha-beta proteins. As a first analysis, we evaluated amino acid propensities for helix, beta-strand, and coil in more than 2000 proteins from the PDBselect dataset. With these propensities, secondary structure predictions performed with a method very similar to that of Chou and Fasman gave us results better than the original one, based on propensities derived from the few tens of X-ray protein structures available in the 1970s. In a refined analysis, we subdivided the PDBselect dataset of proteins in three secondary structural classes, i.e., all-alpha, all-beta, and alpha-beta proteins. For each class, the amino acid propensities for helix, beta-strand, and coil have been calculated and used to predict secondary structure elements for proteins belonging to the same class by using resubstitution and jackknife tests. This second round of predictions further improved the results of the first round. Therefore, amino acid propensities for secondary structures became more reliable depending on the degree of homogeneity of the protein dataset used to evaluate them. Indeed, our results indicate also that all algorithms using propensities for secondary structure can be still improved to obtain better predictive results.  相似文献   

10.
Pan XM 《Proteins》2001,43(3):256-259
In the present work, a novel method was proposed for prediction of secondary structure. Over a database of 396 proteins (CB396) with a three-state-defining secondary structure, this method with jackknife procedure achieved an accuracy of 68.8% and SOV score of 71.4% using single sequence and an accuracy of 73.7% and SOV score of 77.3% using multiple sequence alignments. Combination of this method with DSC, PHD, PREDATOR, and NNSSP gives Q3 = 76.2% and SOV = 79.8%.  相似文献   

11.
An integrated family of amino acid sequence analysis programs   总被引:12,自引:0,他引:12  
During the last years abundant sequence data has become availabledue to the rapid progress in protein and DNA sequencing techniques.The exact three-dimensional structures, however, are availableonly for a fraction of proteins with known sequences. For manypurposes the primary amino acid sequence of a protein can bedirectly used to predict important structural parameters. However,mathematical presentation of the calculated values often makesinterpretation difficult, especially if many proteins must beanalysed and compared. Here we introduce a broad-based, user-definedanalysis of amino acid sequence information. The program packageis based on published algorithms and is designed to access standardprotein data bases, calculate hydropathy, surface probabilityand flexibility values and perform secondary structure predictions.The data output is in an ‘easy-to-read’ graphicformat and several parameters can be superimposed within a singleplot in order to simplify data interpretations. Additionally,this package includes a novel algorithm for the prediction ofpotential antigenic sites. Thus the software package presentedhere offers a powerful means of analysing an amino acid sequencefor the purpose of structure/function studies as well as antigenicsite analyses. These algorithms were written to function incontext with the UWGCG (University of Wisconsin Genetics ComputerGroup) program collection, and are now distributed within thatpackage. Received on March 20, 1987; accepted on September 4, 1987  相似文献   

12.
Huang JT  Xing DJ  Huang W 《Amino acids》2012,43(2):567-572
The successful prediction of protein-folding rates based on the sequence-predicted secondary structure suggests that the folding rates might be predicted from sequence alone. To pursue this question, we directly predict the folding rates from amino acid sequences, which do not require any information on secondary or tertiary structure. Our work achieves 88% correlation with folding rates determined experimentally for proteins of all folding types and peptide, suggesting that almost all of the information needed to specify a protein's folding kinetics and mechanism is comprised within its amino acid sequence. The influence of residue on folding rate is related to amino acid properties. Hydrophobic character of amino acids may be an important determinant of folding kinetics, whereas other properties, size, flexibility, polarity and isoelectric point, of amino acids have contributed little to the folding rate constant.  相似文献   

13.
Circular dichroism studies were carried out in the vacuum ultraviolet region for thymidylate synthase from Lactobacillus casei and its ligand complexes. The CD spectrum was analyzed for secondary structure by our method and the variable selection method, and both gave similar results. Our method predicts 33% alpha-helix, 25% (23% antiparallel and 2% parallel) beta-sheet, 20% turns, and 16% other structure. The secondary structure of this protein was also predicted from the amino acid sequence by four different methods. Though there is a variation in the prediction among these methods, the prediction of 32% alpha-helix and 23% beta-sheet by combining the four methods is in excellent agreement with our CD results. Further, the location of the predicted regions of alpha-helices and beta-strands along the sequence and the CD characteristics strongly suggest that this protein belongs to an alpha + beta structural class. Binding of the inhibitor FdUMP or the cofactor 5,10-methylenetetrahydrofolate did not change the CD spectrum. However, when both ligands were present, there was a significant change in the CD spectrum and the maximum changes occurred when the concentration of FdUMP was 1 mol/mol of enzyme. The addition of FdUMP and cofactor causes, respectively, a 5% and 6% decrease in beta-sheet and beta-turns and about an 8% increase in "other" structure.  相似文献   

14.
Kinjo AR  Horimoto K  Nishikawa K 《Proteins》2005,58(1):158-165
The contact number of an amino acid residue in a protein structure is defined by the number of C(beta) atoms around the C(beta) atom of the given residue, a quantity similar to, but different from, solvent accessible surface area. We present a method to predict the contact numbers of a protein from its amino acid sequence. The method is based on a simple linear regression scheme and predicts the absolute values of contact numbers. When single sequences are used for both parameter estimation and cross-validation, the present method predicts the contact numbers with a correlation coefficient of 0.555 on average. When multiple sequence alignments are used, the correlation increases to 0.627, which is a significant improvement over previous methods. In terms of discrete states prediction, the accuracies for 2-, 3-, and 10-state predictions are, respectively, 71.4%, 54.1%, and 18.9% with residue type-dependent unbiased thresholds, and 76.3%, 59.2%, and 21.8% with residue type-independent unbiased thresholds. The difference between accessible surface area and contact number from a prediction viewpoint and the application of contact number prediction to three-dimensional structure prediction are discussed.  相似文献   

15.
A protein secondary structure prediction method from multiply aligned homologous sequences is presented with an overall per residue three-state accuracy of 70.1%. There are two aims: to obtain high accuracy by identification of a set of concepts important for prediction followed by use of linear statistics; and to provide insight into the folding process. The important concepts in secondary structure prediction are identified as: residue conformational propensities, sequence edge effects, moments of hydrophobicity, position of insertions and deletions in aligned homologous sequence, moments of conservation, auto-correlation, residue ratios, secondary structure feedback effects, and filtering. Explicit use of edge effects, moments of conservation, and auto-correlation are new to this paper. The relative importance of the concepts used in prediction was analyzed by stepwise addition of information and examination of weights in the discrimination function. The simple and explicit structure of the prediction allows the method to be reimplemented easily. The accuracy of a prediction is predictable a priori. This permits evaluation of the utility of the prediction: 10% of the chains predicted were identified correctly as having a mean accuracy of > 80%. Existing high-accuracy prediction methods are "black-box" predictors based on complex nonlinear statistics (e.g., neural networks in PHD: Rost & Sander, 1993a). For medium- to short-length chains (> or = 90 residues and < 170 residues), the prediction method is significantly more accurate (P < 0.01) than the PHD algorithm (probably the most commonly used algorithm). In combination with the PHD, an algorithm is formed that is significantly more accurate than either method, with an estimated overall three-state accuracy of 72.4%, the highest accuracy reported for any prediction method.  相似文献   

16.
In order to process data of proteins, a numerical representation for an amino acid is often necessary. Many suitable parameters can be derived from experiments or statistical analysis of databases. To ensure a fast and efficient use of these sources of information, a reduction and extraction of relevant information out of these parameters is a basic need. In this approach established methods like principal component analysis (PCA) are supplemented by a method based on symmetric neural networks. Two different parameter representations of amino acids are reduced from five and seven dimensions, respectively, to one, two, three, or four dimensions by using a symmetric neural network approach alternatively with one or three hidden layers. It is possible to create general reduced parameter representations for amino acids. To demonstrate the ability of this approach, these reduced sets of parameters are applied for the ab initio prediction of protein secondary structure from primary structure only. Artificial neural networks are implemented and trained with a diverse representation of 430 proteins out of the PDB. An essentially faster training and also prediction without a decrease in accuracy is obtained for the reduced parameter representations in comparison with the complete set of parameters. The method is transferable to other amino acids or even other molecular building blocks, like nucleic acids, and therefore represents a general approach.Electronic Supplementary Material available.  相似文献   

17.
A protein is generally classified into one of the following four structural classes: all alpha, all beta, alpha+beta and alpha/beta. In this paper, based on the weighting to the 20 constituent amino acids, a new method is proposed for predicting the structural class of a protein according to its amino acid composition. The 20 weighting parameters, which reflect the different properties of the 20 constituent amino acids, have been obtained from a training set of proteins through the linear-programming approach. The rate of correct prediction for a training set of proteins by means of the new method was 100%, whereas the highest rate of previous methods was 82.8%. Furthermore, the results showed that the more numerous training proteins, the more effective the new method.  相似文献   

18.
19.
In principle, structural information of protein sequences with no detectable homology to a protein of known structure could be obtained by predicting the arrangement of their secondary structural elements. Although some ab initio methods for protein structure prediction have been reported, the long-range interactions required to accurately predict tertiary structures of β-sheet containing proteins are still difficult to simulate. To remedy this problem and facilitate de novo prediction of β-sheet containing protein structures, we developed a support vector machine (SVM) approach that classified parallel and antiparallel orientation of β-strands by using the information of interstrand amino acid pairing preferences. Based on a second-order statistics on the relative frequencies of each possible interstrand amino acid pair, we defined an average amino acid pairing encoding matrix (APEM) for encoding β-strands as input in the prediction model. As a result, a prediction accuracy of 86.89% and a Matthew's correlation coefficient value of 0.71 have been achieved through 7-fold cross-validation on a non-redundant protein dataset from PISCES. Although several issues still remain to be studied, the method presented here to some extent could indicate the important contribution of the amino acid pairs to the β-strand orientation, and provide a possible way to further be combined with other algorithms making a full ‘identification’ of β-strands.  相似文献   

20.
Shestopalov BV 《Tsitologiia》2003,45(7):707-713
In the previous paper (Shestopalov, 2003) we presented the amino acid code of protein secondary structure as a partial solution of the fundamental problem of the protein three-dimensional structure calculation from the amino acid sequence. Here a statistical model of the code is described. The model is based on the structural data from 2258 protein chains (417,112 amino acid residues used). 60 and 61% of the secondary structure, calculated using the model, coincide, respectively, with the observed secondary structure in the training subset and test subset (104 protein chains and 21,166 residues used). This is equal to the threshold value for all the secondary structure calculations, based on the models, where, similarly as here, only the nearest and middle-range interactions are considered. Therefore the constructed model can be applied for the protein structure prediction from the amino acid sequence, especially when additional information is used along with expert analysis, as in the most successful prediction methods. The model can be used for analysis of the secondary structure changes during protein folding by comparison of the calculated and observed secondary structures. The information about the conformationally invariant segments can serve for the simulation of the supersecondary structure formation. One can try to obtain and examine the protein subset, in which the calculated and observed secondary structures are very similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号