首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The envelope glycoprotein complex (gp120-gp41) of human immunodeficiency virus type 1 (HIV-1) promotes the fusion of viral and cellular membranes through formation of the fusion-active six-helix bundle in the gp41 ectodomain. This gp41 core structure consists of three C-terminal helices packed in an antiparallel manner into hydrophobic grooves on the surface of the N-terminal trimeric coiled coil. Alanine mutations that destabilize the N- and C-terminal interhelical packing interactions also reduce viral infectivity. Here we show that viruses bearing these mutations exhibit a marked potentiation of inhibition by peptides that make up the gp41 core. By contrast, these viruses are unchanged in their sensitivities to soluble CD4, the CXCR4 coreceptor ligand SDF-1alpha, and human anti-HIV immunoglobulin, reagents that impact the initial, receptor-induced conformational changes in the envelope glycoprotein. Our results support the notion that these alanine mutations specifically affect the conformational transition to the fusion-active gp41 structure. The mutations also increase viral sensitivity to the gp41-directed monoclonal antibody 2F5, suggesting that this broadly neutralizing antibody may also interfere with this transition. The conformational activation of the HIV-1 envelope glycoprotein likely represents a viable target for vaccine and antiviral drug development.  相似文献   

2.
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.  相似文献   

3.
The human and simian immunodeficiency viruses (HIV and SIV) envelope glycoprotein consists of a trimer of two noncovalently and weakly associated subunits, gp120 and gp41. Upon binding of gp120 to cellular receptors, this labile native envelope complex undergoes conformational changes, resulting in a stable trimer-of-hairpins structure in gp41. Formation of the hairpin structure is thought to mediate membrane fusion by placing the viral and cellular membranes in close proximity. An in vitro-derived variant of SIVmac251, denoted CPmac, has acquired an unusually stable virion-associated gp120-gp41 complex. This unique phenotype is conferred by five amino acid substitutions in the gp41 ectodomain. Here we characterize the structural and physicochemical properties of the N40(L6)C38 model of the CPmac gp41 core. The 1.7-A resolution crystal structure of N40(L6)C38 is very similar to the six-helix bundle structure present in the parent SIVmac251 gp41. In both structures, three N40 peptides form a central three-stranded coiled coil, and three C38 peptides pack in an antiparallel orientation into hydrophobic grooves on the coiled-coil surface. Thermal unfolding studies show that the CPmac mutations destabilize the SIVmac251 six-helix bundle by 15 kJ/mol. Our results suggest that the formation of the gp41 trimer-of-hairpins structure is thermodynamically coupled to the conformational stability of the native envelope glycoprotein and raise the intriguing possibility that introduction of mutations to destabilize the six-helix bundle may lead to the stabilization of the trimeric gp120-gp41 complex. This study suggests a potential strategy for the production of stably folded envelope protein immunogens for HIV vaccine development.  相似文献   

4.
Lu M  Stoller MO  Wang S  Liu J  Fagan MB  Nunberg JH 《Journal of virology》2001,75(22):11146-11156
Membrane fusion by human immunodeficiency virus type 1 (HIV-1) is promoted by the refolding of the viral envelope glycoprotein into a fusion-active conformation. The structure of the gp41 ectodomain core in its fusion-active state is a trimer of hairpins in which three antiparallel carboxyl-terminal helices pack into hydrophobic grooves on the surface of an amino-terminal trimeric coiled coil. In an effort to identify amino acid residues in these grooves that are critical for gp41 activation, we have used alanine-scanning mutagenesis to investigate the importance of individual side chains in determining the biophysical properties of the gp41 core and the membrane fusion activity of the gp120-gp41 complex. Alanine substitutions at Leu-556, Leu-565, Val-570, Gly-572, and Arg-579 positions severely impaired membrane fusion activity in envelope glycoproteins that were for the most part normally expressed. Whereas alanine mutations at Leu-565 and Val-570 destabilized the trimer-of-hairpins structure, mutations at Gly-572 and Arg-579 led to the formation of a stable gp41 core. Our results suggest that the Leu-565 and Val-570 residues are important determinants of conserved packing interactions between the amino- and carboxyl-terminal helices of gp41. We propose that the high degree of sequence conservation at Gly-572 and Arg-579 may result from selective pressures imposed by prefusogenic conformations of the HIV-1 envelope glycoprotein. Further analysis of the gp41 activation process may elucidate targets for antiviral intervention.  相似文献   

5.
Liu J  Shu W  Fagan MB  Nunberg JH  Lu M 《Biochemistry》2001,40(9):2797-2807
The envelope glycoprotein of HIV-1 consists of the surface subunit gp120 and the transmembrane subunit gp41. Binding of gp120 to target cell receptors induces a conformational change in gp41, which then mediates the fusion of viral and cellular membranes. A buried isoleucine (Ile573) in a central trimeric coiled coil within the fusion-active gp41 ectodomain core is thought to favor this conformational activation. The role of Ile573 in determining the structure and function of the gp120-gp41 complex was investigated by mutating this residue to threonine, a nonconservative substitution in HIV-1 that occurs naturally in SIV. While the introduction of Thr573 markedly destabilized the gp41 core, the three-dimensional structure of the mutant trimer of hairpins was very similar to that of the wild-type molecule. A new hydrogen-bonding interaction between the buried Thr573 and Thr569 residues appears to allow formation of the trimer-of-hairpins structure at physiological temperature. The mutant envelope glycoprotein expressed in 293T cells and incorporated within pseudotyped virions displayed only a moderate reduction in syncytium-inducing capacity and virus infectivity, respectively. Our results demonstrate that the proper folding of the gp41 core underlies the membrane fusion properties of the gp120-gp41 complex. An understanding of the gp41 activation process may suggest novel strategies for vaccine and antiviral drug development.  相似文献   

6.
The binding of CD4 and chemokine receptors to the gp120 attachment glycoprotein of human immunodeficiency virus triggers refolding of the associated gp41 fusion glycoprotein into a trimer of hairpins with a 6-helix bundle (6HB) core. These events lead to membrane fusion and viral entry. Here, we examined the functions of the fusion peptide-proximal polar segment and membrane-proximal Trp-rich region (MPR), which are exterior to the 6HB. Alanine substitution of Trp(666), Trp(672), Phe(673), and Ile(675) in the MPR reduced entry by up to 120-fold without affecting gp120-gp41 association or cell-cell fusion. The L537A polar segment mutation led to the loss of gp120 from the gp120-gp41 complex, reduced entry by approximately 10-fold, but did not affect cell-cell fusion. Simultaneous Ala substitution of Leu(537) with Trp(666), Trp(672), Phe(673), or Ile(675) abolished entry with 50-80% reductions in cell-cell fusion. gp120-gp41 complexes of fusion-defective double mutants were resistant to soluble CD4-induced shedding of gp120, suggesting that their ability to undergo receptor-induced conformational changes was compromised. Consistent with this idea, a representative mutation, L537A/W666A, led to an approximately 80% reduction in lipophilic fluorescent dye transfer between gp120-gp41-expressing cells and receptor-expressing targets, indicating a block prior to the lipid-mixing phase. The L537A/W666A double mutation increased the chymotrypsin sensitivity of the polar segment in a trimer of hairpins model, comprising the 6HB core, the polar segment, and MPR linked N-terminally to maltose-binding protein. The data indicate that the polar segment and MPR of gp41 act synergistically in forming a fusion-competent gp120-gp41 complex and in stabilizing the membrane-interactive end of the trimer of hairpins.  相似文献   

7.
The gp41 envelope protein of human immunodeficiency virus type 1 (HIV-1) contains an alpha-helical core structure responsible for mediating membrane fusion during viral entry. Recent studies suggest that a conserved hydrophobic cavity in the coiled coil of this core plays a distinctive structural role in maintaining the fusogenic conformation of the gp41 molecule. Here we investigated the importance of this cavity in determining the structure and biological activity of the gp41 core by using the N34(L6)C28 model. The high-resolution crystal structures of N34(L6)C28 of two HIV-1 gp41 fusion-defective mutants reveal that each mutant sequence is accommodated in the six-helix bundle structure by forming the cavity with different sets of atoms. Remarkably, the mutant N34(L6)C28 cores are highly effective inhibitors of HIV-1 infection, with 5- to 16-fold greater activity than the wild-type molecule. The enhanced inhibitory activity by fusion-defective mutations correlates with local structural perturbations close to the cavity that destabilize the six-helix bundle. Taken together, these results indicate that the conserved hydrophobic coiled-coil cavity in the gp41 core is critical for HIV-1 entry and its inhibition and provides a potential antiviral drug target.  相似文献   

8.
The gp41 envelope protein mediates entry of human immunodeficiency virus type 1 (HIV-1) into the cell by promoting membrane fusion. The crystal structure of a gp41 ectodomain core in its fusion-active state is a six-helix bundle in which a N-terminal trimeric coiled coil is surrounded by three C-terminal outer helices in an antiparallel orientation. Here we demonstrate that the N34(L6)C28 model of the gp41 core is stabilized by interaction with the ionic detergent sodium dodecyl sulfate (SDS) or the nonionic detergent n-octyl-beta-D-glucopyranoside (betaOG). The high resolution x-ray structures of N34(L6)C28 crystallized from two different detergent micellar media reveal a six-helix bundle conformation very similar to that of the molecule in water. Moreover, N34(L6)C28 adopts a highly alpha-helical conformation in lipid vesicles. Taken together, these results suggest that the six-helix bundle of the gp41 core displays substantial affinity for lipid bilayers rather than unfolding in the membrane environment. This characteristic may be important for formation of the fusion-active gp41 core structure and close apposition of the viral and cellular membranes for fusion.  相似文献   

9.
The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.  相似文献   

10.
The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.  相似文献   

11.
The interaction between the gp120 and gp41 subunits of the human immunodeficiency virus envelope glycoprotein serves to stabilize the virion form of the complex and to transmit receptor-induced conformational changes in gp120 to trigger the membrane fusion activity of gp41. In this study, we used site-directed mutagenesis to identify amino acid residues in the central ectodomain of gp41 that contribute to the stability of the gp120-gp41 association. We identified alanine mutations at six positions, including four tryptophan residues, which result in mutant envelope glycoprotein complexes that fail to retain gp120 on the cell surface. These envelope glycoproteins readily shed their gp120 and are unable to mediate cell-cell fusion. These findings suggest an important role for the conserved bulky hydrophobic residues in stabilizing the gp120-gp41 complex.  相似文献   

12.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

13.
Liu S  Zhao Q  Jiang S 《Peptides》2003,24(9):1303-1313
Triggered by receptor binding of gp120, the human immunodeficiency virus type 1 (HIV-1) gp41 changes its conformation to a fusogenic six-helix bundle structure. In the present study, this core conformation modeled by the peptides derived from the gp41 N- and C-terminal heptad repeat regions was determined by fluorescence native polyacrylamide gel electrophoresis and size exclusion high-performance liquid chromatography (HPLC). Two previously described small molecule HIV-1 fusion inhibitors significantly blocked the six-helix bundle formation. It suggests that these biophysical techniques can be used in a novel way to study the conformational change of gp41 during virus entry into cells and to identify HIV-1 fusion inhibitors.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) entry requires conformational changes in the transmembrane subunit (gp41) of the envelope glycoprotein (Env) involving transient fusion intermediates that contain exposed coiled-coil (prehairpin) and six-helix bundle structures. We investigated the HIV-1 entry mechanism and the potential of antibodies targeting fusion intermediates to block Env-mediated membrane fusion. Suboptimal temperature (31.5 degrees C) was used to prolong fusion intermediates as monitored by confocal microscopy. After transfer to 37 degrees C, these fusion intermediates progressed to syncytium formation with enhanced kinetics compared with effector-target (E/T) cell mixtures that were incubated only at 37 degrees C. gp41 peptides DP-178, DP-107, and IQN17 blocked fusion more efficiently (5- to 10-fold-lower 50% inhibitory dose values) when added to E/T cells at the suboptimal temperature prior to transfer to 37 degrees C. Rabbit antibodies against peptides modeling the N-heptad repeat or the six-helix bundle of gp41 blocked fusion and viral infection at 37 degrees C only if preincubated with E/T cells at the suboptimal temperature. Similar fusion inhibition was observed with human six-helix bundle-specific monoclonal antibodies. Our data demonstrate that antibodies targeting gp41 fusion intermediates are able to bind to gp41 and arrest fusion. They also indicate that six-helix bundles can form prior to fusion and that the lag time before fusion occurs may include the time needed to accumulate preformed six-helix bundles at the fusion site.  相似文献   

15.
The HIV-1 gp41 envelope glycoprotein is responsible for the membrane fusion between the virus and the target cell. According to recent models, the N-terminal coiled-coil (NHR) region of gp41 is involved in forming the interfaces between neighboring helices in the six-helix bundle, as well as in membrane binding and perturbation. In order to get new insights into the viral membrane fusion mechanism, two peptides, pFP15 and pFP23, pertaining to the first part of the gp41 NHR domain were studied regarding their structure and their ability to induce membrane leakage, aggregation, and fusion, as well as their affinity toward specific phospholipids by a variety of spectroscopic methods. Our results demonstrate that the first part of the NHR domain interacts with negatively charged phospholipid-containing model membranes, modifies the phase behavior of membrane phospholipids, and induces leakage and aggregation of liposomes, suggesting that it could be involved directly in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the gp41 glycoprotein to boost the fusion process. On the other hand, we suggest that this region of the NHR domain could be involved in the first steps of the destabilization of the HIV-1 gp41 six-helix bundle after its interaction with negatively charged phospholipid headgroups.  相似文献   

16.
Shu W  Liu J  Ji H  Radigen L  Jiang S  Lu M 《Biochemistry》2000,39(7):1634-1642
The HIV-1 gp41 envelope protein mediates membrane fusion that leads to virus entry into the cell. The core structure of fusion-active gp41 is a six-helix bundle in which an N-terminal three-stranded coiled coil is surrounded by a sheath of antiparallel C-terminal helices. A conserved glutamine (Gln 652) buried in this helical interface replaced by leucine increases HIV-1 infectivity. To define the basis for this enhanced membrane fusion activity, we investigate the role of the Gln 652 to Leu substitution on the conformation, stability, and biological activity of the N34(L6)C28 model of the gp41 ectodomain core. The 2.0 A resolution crystal structure of the mutant molecule shows that the Leu 652 side chains make prominent contacts with hydrophobic grooves on the surface of the central coiled coil. The Gln 652 to Leu mutation leads to a marginal stabilization of the six-helix bundle by -0.8 kcal/mol, evaluated from thermal unfolding experiments. Strikingly, the mutant N34(L6)C28 peptide is a potent inhibitor of HIV-1 infection, with 10-fold greater activity than the wild-type molecule. This inhibitory potency can be traced to the corresponding C-terminal mutant peptide that likely has greater potential to interact with the coiled-coil trimer. These results provide strong evidence that conserved interhelical packing interactions in the gp41 core are important determinants of HIV-1 entry and its inhibition. These interactions also offer a test-bed for the development of more potent analogues of gp41 peptide inhibitors.  相似文献   

17.
The binding by HIV-1 gp120 to CD4 and a chemokine receptor activates the membrane fusion glycoprotein, gp41. The fusion function of gp41 involves the refolding of its core into a 6-helix bundle, which apposes the lipophilic termini (the fusion peptide and transmembrane domain) and the associated cell and viral membranes, leading to their fusion. In this study, we examined the functional role of the polar segment and membrane proximal external region (MPER), which link the fusion peptide and transmembrane domain, respectively, to the core domain and interact to form a terminal clasp adjacent to the core. Limited proteolysis indicated that the terminal clasp is destabilized by simultaneous I535A/V539G mutations within the polar segment and mutations within the MPER. The destabilizing effects of I535A/V539G correlated with defective cell-cell fusion, viral entry, and viral replication. By using lipophilic and cytoplasmic fluorescent dye transfer assays, we found that terminal clasp destabilization is linked to a block in the lipid mixing/hemifusion phase of the membrane fusion cascade. Because the biosynthesis of the prefusion gp120-gp41 complex did not appear to be affected by I535A/V539G, we infer that the hemifusion block is due to a specific effect on the trimer of hairpins conformation of gp41. By contrast, the decreased fusion function of the MPER mutants correlated with a decrease in the interfacial hydropathy of the MPER sequence, suggesting that the prefusion Env complex had been adversely affected in these cases. These findings reveal a novel conserved functional target for the discovery of fusion inhibitors.  相似文献   

18.
Shang L  Yue L  Hunter E 《Journal of virology》2008,82(11):5417-5428
The membrane-spanning domain (MSD) of the human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein is critical for its biological activity. Previous C-terminal truncation studies have predicted an almost invariant core structure of 12 amino acid residues flanked by basic amino acids in the HIV-1 MSD that function to anchor the glycoprotein in the lipid bilayer. To further understand the role of specific amino acids within the MSD core, we initially replaced the core region with 12 leucine residues and then constructed recovery-of-function mutants in which specific amino acid residues (including a GGXXG motif) were reintroduced. We show here that conservation of the MSD core sequence is not required for normal expression, processing, intracellular transport, and incorporation into virions of the envelope glycoprotein (Env). However, the amino acid composition of the MSD core does influence the ability of Env to mediate cell-cell fusion and plays a critical role in the infectivity of HIV-1. Replacement of conserved amino acid residues with leucine blocked virus-to-cell fusion and subsequent viral entry into target cells. This restriction could not be released by C-terminal truncation of the gp41 glycoprotein. These studies imply that the highly conserved core residues of the HIV Env MSD, in addition to serving as a membrane anchor, play an important role in mediating membrane fusion during viral entry.  相似文献   

19.
The HIV-1 gp41 (glycoprotein 41) core plays a critical role in fusion between the viral and target cell membranes. We previously identified a gp41 core-binding motif, HXXNPF, by screening the phage display peptide libraries. In the present study, we elucidated the mechanism of action of HXXNPF motif-containing molecules of different sizes, including the phage clone L7.8 (a selected positive phage clone), L7.8-g3p* (a 10-kDa fragment of the gene 3 protein) and JCH-4 (a peptide containing 13 residues of L7.8-g3p*), regarding their respective binding abilities to the six-helix bundle and inhibition on syncytium formation at different temperatures. We found that all of the HXXNPF motif-containing molecules could bind to the gp41 core, and that their binding sites may be located in the N-helix domain. L7.8-g3p* and JCH-4 effectively inhibited HIV-1 Env (envelope glycoprotein)-mediated syncytium formation at 37 degrees C, while the phage clone L7.8 showed no inhibition under the same conditions. However, at suboptimal temperature (31.5 degrees C), all of these HXXNPF motif-containing molecules were capable of inhibiting syncytium formation. These results suggest that these HXXNPF motif-containing molecules mainly bind to the gp41 core and stop the fusion process mediated by the fusion-active core, resulting in inhibition of HIV-1 fusion and entry. The HXXNPF motif-containing molecules may be used as probes for studying the role of the HIV-1 gp41 core in the late stage of the membrane-fusion process.  相似文献   

20.
Huang JH  Liu ZQ  Liu S  Jiang S  Chen YH 《FEBS letters》2006,580(20):4807-4814
The HIV-1 gp41 core, a six-helix bundle formed between the N- and C-terminal heptad repeats, plays a critical role in fusion between the viral and target cell membranes. Using N36(L8)C34 as a model of the gp41 core to screen phage display peptide libraries, we identified a common motif, HXXNPF (X is any of the 20 natural amino acid residues). A selected positive phage clone L7.8 specifically bound to N36(L8)C34 and this binding could be blocked by a gp41 core-specific monoclonal antibody (NC-1). JCH-4, a peptide containing HXXNPF motif, effectively inhibited HIV-1 envelope glycoprotein-mediated syncytium-formation. The epitope of JCH-4 was proven to be linear and might locate in the NHR regions of the gp41 core. These data suggest that HXXNPF motif may be a gp41 core-binding sequence and HXXNPF motif-containing molecules can be used as probes for studying the role of the HIV-1 gp41 core in membrane fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号