首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens. Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco.  相似文献   

2.
The nonexpressor of pathogenesis-related (PR) genes (NPR1) protein plays an important role in mediating defense responses activated by pathogens in Arabidopsis. In rice, a disease-resistance pathway similar to the Arabidopsis NPR1-mediated signaling pathway one has been described. Here, we show that constitutive expression of the Arabidopsis NPR1 (AtNPR1) gene in rice confers resistance against fungal and bacterial pathogens. AtNPR1 exerts its protective effects against fungal pathogens by priming the expression of salicylic acid (SA)-responsive endogenous genes, such as the PR1b, TLP (PR5), PR10, and PBZ1. However, expression of AtNPR1 in rice has negative effects on viral infections. The AtNPR1-expressing rice plants showed a higher susceptibility to infection by the Rice yellow mottle virus (RYMV) which correlated well with a misregulation of RYMV-responsive genes, including expression of the SA-regulated RNA-dependent RNA polymerase 1 gene (OsRDR1). Moreover, AtNPR1 negatively regulates the expression of genes playing a role in the plant response to salt and drought stress (rab21, salT, and dip1), which results in a higher sensitivity of AtNPR1 rice to the two types of abiotic stress. These observations suggest that AtNPR1 has both positive and negative regulatory roles in mediating defense responses against biotic and abiotic stresses.  相似文献   

3.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   

4.
5.
来源于昆虫病毒和动物的抗细胞凋亡基因能够诱导植物对生物或者非生物胁迫产生抗性.但其抗性机理有不同甚至相反的报道.本研究将来源于苜蓿银纹夜蛾核多角体病毒的p35基因转化烟草,T1代转化烟草Western blotting检测P35蛋白的表达,转化烟草接种烟草花叶病毒(Tobacco mosaic virus,TMV)抗病效果增强.进一步的抗病机理研究表明,转化和野生型烟草感染TMV后诱导过氧化氢积累无明显区别,野生型烟草感染24 h后出现DNA Laddering而转化烟草则没有;Western blotting结果显示PR-1蛋白表达没有显著差异.但接种另外一种病原真菌核盘茵(Sclerotiniasclerotiorum)后的RT-PCR分析结果表明,表达P35蛋白的烟草可增强感染核盘菌后PR-1基因的转录.而且表达时间提前.以上结果说明p35基因介导的广谱抗病反应的机理与接种的不同病原有关,对不同病原物的抗病机理存在差异,除抑制细胞凋亡外,还可能通过激活PR基因的表达提高对病原物的抗病能力.  相似文献   

6.
7.
8.
Fusarium head blight (FHB) is a devastating disease of wheat and barley which causes extensive losses worldwide. Monogenic, gene-for-gene resistance to FHB has not been reported. The best source of resistance to FHB is a complex, quantitative trait derived from the wheat cv. Sumai 3. Here, we show that the Arabidopsis thaliana NPR1 gene (AtNPR1), which regulates the activation of systemic acquired resistance, when expressed in the FHB-susceptible wheat cv. Bobwhite, confers a heritable, type II resistance to FHB caused by Fusarium graminearum. The heightened FHB resistance in the transgenic AtNPRI -expressing wheat is associated with the faster activation of defense response when challenged by the fungus. PR1 expression is induced rapidly to a high level in the fungus-challenged spikes of the AtNPR1-expressing wheat. Furthermore, benzothiadiazole, a functional analog of salicylic acid, induced PR1 expression faster and to a higher level in the AtNPR1-expressing wheat than in the nontransgenic plants. We suggest that FHB resistance in the AtNPR1-expressing wheat is a result of these plants being more responsive to an endogenous activator of plant defense. Our results demonstrate that NPR1 is an effective candidate for controlling FHB.  相似文献   

9.
Salicylic acid (SA) has been shown to act as a signal molecule that is produced by many plants subsequent to the recognition of potentially pathogenic microbes. Increases in levels of SA often trigger the activation of plant defenses and can result in increased resistance to subsequent challenge by pathogens. We observed that the polyketide 6-methylsalicylic acid (6-MeSA), a compound that apparently is not endogenous to tobacco, can mimic SA. Tobacco leaves treated with 6-MeSA show enhanced accumulation of the pathogenesis-related (PR) proteins PR1, beta-1,3-glucanase, and chitinase and also develop increased resistance to tobacco mosaic virus. We transformed tobacco with 6msas, the 6-methylsalicylic acid synthase (6MSAS) gene from Penicillium patulum, to generate plants that constitutively accumulate 6-MeSA. Analysis of primary transformants and the first generation progeny of 6MSAS tobacco revealed that plants can be engineered to accumulate significant amounts of 6-MeSA as a conjugate. Levels of total 6-MeSA increased with plant age. Increased 6-MeSA accumulation correlated with increased levels of PR1 and chitinase proteins and resulted in enhanced resistance of NN genotype 6MSAS tobacco to tobacco mosaic virus. Our results demonstrate that a multistep biosynthetic pathway can be engineered into plants using a single fungal polyketide synthase gene. The functional expression of 6msas can be used to activate disease resistance pathways that normally are induced by SA.  相似文献   

10.
Increases in endogenous salicylic acid (SA) levels and induction of several families of pathogenesis-related genes (PR-1 through PR-5) occur during the resistance response of tobacco to tobacco mosaic virus infection. We found that at temperatures that prevent the induction of PR genes and resistance, the increases in SA levels were eliminated. The addition of exogenous SA to infected plants at these temperatures was sufficient to induce the PR genes but not the hypersensitive response. However, when the resistance response was restored by shifting infected plants to permissive temperatures, SA levels increased dramatically and preceded PR-1 gene expression and necrotic lesion formation associated with resistance. SA was also found in a conjugated form whose levels increased in parallel with the free SA levels. The majority of the conjugates appeared to be SA glucosides. The same glucoside was formed when plants were supplied with exogenous SA. These results provide further evidence that endogenous SA signals the induction of certain defense responses and suggests additional complexity in the modulation of this signal.  相似文献   

11.
12.
13.
Salicylic acid regulates basal resistance to Fusarium head blight in wheat   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.  相似文献   

14.
We have used an hrp-positive strain of the soft rot pathogen Erwinia carotovora subsp. carotovora to elucidate plant responses to this bacterial necrotroph. Purified virulence determinants, harpin (HrpN) and polygalacturonase (PehA), were used as tools to facilitate this analysis. We show that HrpN elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. Establishment of resistance is accompanied by the expression of salicylic acid (SA)-dependent, but also jasmonate/ethylene (JA/ET)-dependent, marker genes PR1 and PDF1.2, respectively, suggesting that both SA-dependent and JA/ET-dependent defense pathways are activated. Use of pathway-specific mutants and transgenic NahG plants show that both pathways are required for the induction of resistance. Arabidopsis plants treated simultaneously with both elictors PehA, known to trigger only JA/ET-dependent defense signaling, and HrpN react with accelerated and enhanced induction of the marker genes PR1 and PDF1.2 both locally and systemically. This mutual amplification of defense gene expression involves both SA-dependent and JA/ET-dependent defense signaling. The two elicitors produced by E. carotovora subsp. carotovora also cooperate in triggering increased production of superoxide and lesion formation.  相似文献   

15.
16.
The strobilurin class of fungicides comprises a variety of synthetic plant-protecting compounds with broad-spectrum antifungal activity. In the present study, we demonstrate that a strobilurin fungicide, F 500 (Pyraclostrobin), enhances the resistance of tobacco (Nicotiana tabacum cv Xanthi nc) against infection by either tobacco mosaic virus (TMV) or the wildfire pathogen Pseudomonas syringae pv tabaci. F 500 was also active at enhancing TMV resistance in NahG transgenic tobacco plants unable to accumulate significant amounts of the endogenous inducer of enhanced disease resistance, salicylic acid (SA). This finding suggests that F 500 enhances TMV resistance in tobacco either by acting downstream of SA in the SA signaling mechanism or by functioning independently of SA. The latter assumption is the more likely because in infiltrated leaves, F 500 did not cause the accumulation of SA-inducible pathogenesis-related (PR)-1 proteins that often are used as conventional molecular markers for SA-induced disease resistance. However, accumulation of PR-1 proteins and the associated activation of the PR-1 genes were elicited upon TMV infection of tobacco leaves and both these responses were induced more rapidly in F 500-pretreated plants than in the water-pretreated controls. Taken together, our results suggest that F 500, in addition to exerting direct antifungal activity, may also protect plants by priming them for potentiated activation of subsequently pathogen-induced cellular defense responses.  相似文献   

17.
18.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through asalicylic acid (SA)-mediated pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in tobacco. Soil drench application of CMPA induced PR gene expression and a broad range of disease resistance without antibacterial activity in tobacco. Both analysis of CMPA's effects on NahG transgenic tobacco plants and SA measurement in wild-type plants indicated that CMPA-induced resistance enhancement does not require SA. Therefore, it is suggested that CMPA induces SAR by triggering the signaling at the same level as or downstream of SA accumulation as do both benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester and N-cyanomethyl-2-chloroisonicotinamide.  相似文献   

19.
20.
Zhu JQ  Liu S  Ma Y  Zhang JQ  Qi HS  Wei ZJ  Yao Q  Zhang WQ  Li S 《PloS one》2012,7(6):e38572
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号