首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three preparations of epimedium polysaccharide-propolis flavone immunopotentiator (EPI), EPI liposome, EPI suspension and EPI watery solution were prepared. In immune response test, their adjuvanticities were compared in 14-day-old chickens vaccinated with Newcastle disease (ND) vaccine. In immune protection test, the effects of the three preparations on Newcastle disease virus (NDV) infection were compared in chickens vaccinated with ND vaccine then challenged with NDV. The results displayed that EPI liposome could enhance the antibody titer, T lymphocyte proliferation and the concentrations of interferon-γ and interleukin-6, when compared with the other two preparations. In EPI liposome group, the antibody titers, lymphocyte proliferation and protective rate were the highest, while the mortality and morbidity were the lowest, in comparison with the other groups. These results indicated that liposome could enhance the immune effect of EPI on ND vaccine and would be expected as the suitable dosage form of this immunopotentiator.  相似文献   

2.
Based on our previous research, four sulfated polysaccharide (sPSs) from Tremella and Condonpsis pilosula, sTPStp, sTPS70c, sCPPStp and sCPPS50c, were prepared and their effects on splenic lymphocytes proliferation in vitro and the immune response of ND vaccine in chicken were compared taking the unmodified polysaccharide (uPS) TPStp as control. The results showed that four sPSs could significantly or numerically stimulate splenic lymphocyte proliferation singly or synergistically with LPS in vitro, sTPS70c and sCPPStp demonstrated better effect; promote peripheral lymphocytes proliferation and enhance serum HI antibody titer in chickens vaccinated with ND vaccine, the actions of sPSs were stronger than that of uPS, and sTPS70c at medium dosage presented the best efficacy. These indicated that sulfation modification could improve the immune-enhancing activity of TPS and CPPS, sTPS70c possessed the strongest activity and would be expected as a component of new-type immunopotentiator.  相似文献   

3.
In test in vitro, four sulfated lycium barbarum polysaccharides (sLBPSs) with different degrees of sulfation (DS), sLBPS0.7, sLBPS1.1, sLBPS1.5 and sLBPS1.9, were added into cultured chicken peripheral lymphocytes and the changes of lymphocytes proliferation were compared by MTT assay taking the non-modified LBPS as control. Two sLBPSs with better efficacy, sLBPS1.5 and sLBPS1.9 were selected. In test in vivo, one hundred 14-day-old chickens were averagely divided into five groups randomly. The chickens except blank control group were vaccinated with Newcastle disease vaccine, repeated vaccination at 28 days old. At the same time of the first vaccination, the chickens in three experimental groups were injected with 0.5 mL of sLBPS1.5, sLBPS1.9 and LBPS at 4 mg mL−1, in vaccination control group, with 0.5 mL of physiological saline, once a day for three successive days. On days 7, 14, 21 and 28 after the first vaccination, the changes of peripheral lymphocytes proliferation and serum HI antibody titer were determined. The result showed that two sLBPSs could significantly promote lymphocytes proliferation and enhance serum antibody titer. These results indicated that sulfated modification could enhance the immune-enhancing activity of LBPS, which there was a certain relativity with the DS of sulfated polysaccharide. sLBPS1.5 possessed the best efficacy and would be expected as the component drug of a new-type immunopotentiator.  相似文献   

4.
Three hundred and fifty 14-day-old chickens were randomly assigned to 7 groups. At the same time of vaccination with Newcastle disease vaccine, the chickens in experimental groups were injected with propolis flavonoids liposome (PFL) at three doses, PF and blank liposome, respectively. The titer of serum antibody, concentrations of immunoglobulins G (IgG) and immunoglobulins M (IgM), activity of lymphocytes proliferation and concentrations of cytokines were measured. The results showed that three doses of PFL could significantly enhance antibody titer, concentrations of IgG, IgM, and promote lymphocyte proliferation, interferon-γ and interleukin-2 secretion, and its high and medium doses possessed the best efficacy. In general evaluation, the efficacy of PFL was the best, with certain of dose- and time-effect relationships. These findings indicated that the immunological activity of PF could be enhanced with liposome encapsulation.  相似文献   

5.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

6.
This study was conducted to evaluate the effects of compound polysaccharides (cPS) on the immune responses via chicken models. First, in screening experiment, a comprehensive analysis for immunomodulatory activity of four cPSs, including Astragalus polysaccharides (APS), Epimedium polysaccharides (EPS), sulfated APS (sAPS) and sulfated EPS (sEPS), was performed in vitro and in vivo. APS-sEPS was picked out having the best effect on lymphocyte proliferation and raising the antibody titers. Therefore, the adjuvanticities of APS-sEPS on Newcastle disease (ND) and avian influenza (AI) vaccine were further validated. Chickens were administrated with ND or AI vaccines containing APS-sEPS of 150, 100 and 50 mg/kg, respectively, taking oil adjuvant vaccine as control. It was observed ND or AI antibody titers and lymphocyte proliferation were enhanced at 100 mg/kg of APS-sEPS. In conclusion, appropriate dose of APS-sEPS may be a safe and efficacious immune stimulator candidate suitable for vaccines.  相似文献   

7.
Bacillus megaterium RB-05 was grown on glucose and on “tossa-daisee” (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g−1 substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium.  相似文献   

8.

Background

Although the Newcastle disease virus (NDV) inactivated vaccines and attenuated live vaccines have been used to prevent and control Newcastle disease (ND) for years, there are some disadvantages. Recently, newly developed DNA vaccines have the potential to overcome these disadvantages. The low delivery efficiency, however, hindered the application of DNA vaccines for ND in practice.

Methodology/Principal Findings

The eukaryotic expression plasmid pVAX1-F (o) DNA that expressed the F gene of NDV encapsulated in PLGA nanoparticles (pFNDV-PLGA-NPs) were prepared by a double emulsion-solvent evaporation method and optimal preparation conditions of the pFNDV-PLGA-NPs were determined. Under the optimal conditions, the pFNDV-PLGA-NPs were produced in good morphology and had high stability with a mean diameter of 433.5±7.5 nm, with encapsulation efficiency of 91.8±0.3% and a Zeta potential of +2.7 mV. Release assay in vitro showed that the fusion gene plasmid DNA could be sustainably released from the pFNDV-PLGA-NPs up to 93.14% of the total amount. Cell transfection test indicated that the vaccine expressed and maintained its bioactivity. Immunization results showed that better immune responses of SPF chickens immunized with the pFNDV-PLGA-NPs were induced compared to the chickens immunized with the DNA vaccine alone. In addition, the safety of mucosal immunity delivery system of the pFNDV-PLGA-NPs was also tested in an in vitro cytotoxicity assay.

Conclusions/Significance

The pFNDV-PLGA-NPs could induce stronger cellular, humoral, and mucosal immune responses and reached the sustained release effect. These results laid a foundation for further development of vaccines and drugs in PLGA nanoparticles.  相似文献   

9.
The present study investigated the potency of the mannosylated cationic liposomes (Man liposomes) that we have developed in novel DNA vaccine carrier. Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. The potency of the Man liposome/pCMV-OVA complex was compared with naked pCMV-OVA and that complexed with DC-Chol liposomes. In cultured mouse peritoneal macrophages, MHC class I-restricted antigen presentation of the Man liposome/pCMV-OVA complex was significantly higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. After intravenous administration, OVA mRNA expression and MHC class I-restricted antigen presentation on CD11c+ cells and inflammatory cytokines, such as TNF-alpha, IL-12, and IFN-gamma, that can enhance the Th1 response of the Man liposome/pCMV-OVA complex were higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. Also, the spleen cells from mice immunized by intravenous administration of the Man liposome/pCMV-OVA complex showed the highest proliferation response and IFN-gamma secretion. These findings suggest that the targeted delivery of DNA vaccine by Man liposomes is a potent vaccination method for DNA vaccine therapy.  相似文献   

10.
Experiments were conducted in chickens to understand the effects of oral immunomodulation. Heat inactivated M phlei, a commensal Mycobacterium and a non-specific immunomodulator, was administered orally prior to live Newcastle disease F (ND F) strain vaccination. In experimental birds it lead to an enhanced cell mediated Immune response (CMI) against the vaccine. There was a reduction in the Haemagglutination inhibiting (HI) antibodies. However, it did not affect the protection against a virulent challenge, as the protection percentage was more or less same in vaccinated birds irrespective of the M.phlei administration. M. phlei administration could not enhance the immune response to inactivated ND F vaccine administered orally. The results indicate that M. phlei favours a CMI response to orally administered live ND F vaccine. It may be of potential use in enhancing CMI against vaccines and a cheaper alternative to costlier recombinant cytokines.  相似文献   

11.
The Dtxd (Diphtheria toxoid) was the first antigen encapsulated within liposomes, their adjuvant properties were discovered (their capacity to enhance the vaccine immunogenicity). The point here is not to propose a new method to prepare this lipossomal vaccine. The central idea is to give new dresses for old vaccines by using classical and well-established liposome preparation method changing only the encapsulation pH and the immunization protocol.

The most appropriate method of Dtxd encapsulation within liposome was based on lipid film hydration in 100 mM citrate buffer, pH 4.0. This was accompanied by changes on protein hydrophobicity, observed by CD and fluorescence spectroscopies. Whenever the Dtxd exposed its hydrophobic residues at pH 4.0, it interacted better with the lipossomal (observed by electrophoretic mobility) film than when its hydrophobic residues were buried (pH 9.0). The Dtxd partition coefficient in Triton-X114 and the acrylamide fluorescence quenching were also pH dependent. Both were bigger at pH 4.0 than at pH 9.0. The relationship protein structure and lipid interaction was pH dependent and now it can be easily maximized to enhance encapsulation of antigens in vaccine development.

Mice were primed with formulations containing 5 μg of Dtxd within liposomes prepared in pH 4.0 or 7.0 or 9.0. The boosters were done 38 or 138 days after the first immunization. The IgM produced by immediate response of all lipossomal formulations were higher than the control (free protein). The response patterns and the immune maturity were measured by IgG1 and IgG2a titrations. The IgG1 titers produced by both formulations at pH 4.0 and 7.0 were at least 22 higher than those produced by mice injected lipossomal formulation at pH 9.0. When the boosters were done, 138 days after priming the mice produced a IgG2a titer of 29 and the group that received the booster 30 days after priming produced a titer of 25. The strongest antibody production was the neutralizing antibody (245 higher than the control) produced by those mice injected with lipossomal formulation at pH 4.0 with the booster done 138 days after priming. The simple change on lipossomal pH formulation and timing of the booster enhanced both antibody production and selectivity.  相似文献   

12.
Lu D  Hickey AJ 《AAPS PharmSciTech》2005,6(4):E641-E648
The purpose of this research was to develop liposomal dry powder aerosols for protein delivery. The delivery of stable protein formulations is essential for protein subunit vaccine delivery, which requires local delivery to macrophages in the lungs. β-Glucuronidase (GUS) was used as a model protein to evaluate dry powder liposomes as inhaled delivery vehicles. Dimyristoyl phosphatylcholine:cholesterol (7∶3) was selected as the liposome composition. The lyophilization of liposomes, micronization of the powders, aerosolization using a dry powder inhaler (DPI), and in vitro aerodynamic fine particle fraction upon collection in a twinstage liquid impinger were evaluated. After lyophilization and jet-milling, the total amount of GUS and its activity, representing encapsulation efficiency and stability, were evaluated. The GUS amount and activity were measured and compared with freshly-prepared liposomes in the presence of mannitol, 43% of initial GUS amount, 29% of GUS activity after lyophilization and 36% of GUS amount, 22% of activity after micronization were obtained. Emitted doses from dry powder inhaler were 53%, 58%, 66%, and 73% for liposome powder:mannitol carrier ratios of 1∶0, 1∶4, 1∶9, and 1∶19. Fifteen percent of the liposome particles were less than 6.4 μm in aerodynamic diameter. The results demonstrate that milled liposome powders containing protein molecules can be aerosolized effectively at a fixed flow rate. Influences of different cryoprotectants on lyophilization of protein liposome formulations are reported. The feasibility of using liposomal dry powder aerosols for protein delivery has been demonstrated but further optimization is required in the context of specific therapeutic proteins. Published: December 21, 2005  相似文献   

13.
The main goal of this research was to investigate how different factors influence membrane fouling. The impact of the different concentrations of activated sludge and the amount of extracellular polymer substances (EPS) were monitored. Two pilot plants with submerged membrane modules (hollow fiber and flat sheet) were operated and the raw wastewater was used.Humic substances were identified as the major components of EPS in the activated sludge (more than 34%) in both pilot plants. As the basic constituent in permeate, humic substances were identified as the most dominant components in the effluent (61%) in both pilot plants. Conversely, proteins were mostly analyzed in permeate and supernatant below the detection limit. The total amount of EPS [mg g−1 (VSS)] was similar for concentrations of activated sludge 6, 10 and 14 g L−1. Carbohydrates were identified as the component of EPS which tends most to clog membranes.  相似文献   

14.
Extracellular polymeric substances (EPS) of biological origin are ubiquitous in excess sludges and can be applied as an underlying bioflocculant, owing to their high content of macromolecules and cations. However, low flocculating activity limits the feasibility of their practical applications. This study provides a novel EPS fractionation approach to improve their flocculability by extracting an active EPS fraction and removing the others with low flocculability. The results showed that for two excess sludges (called sludge A and sludge B), the tightly bound EPS (TB-EPS) fraction possessed a high flocculating rate to kaolin suspension compared with the other EPS fractions [i.e., supernatant, slime, and loosely bound EPS (LB-EPS) fraction] (>54.1 ± 1.4% vs <7.8 ± 1.6%). High bioflocculability of TB-EPS fraction could be attributable to high contents of macromolecules (330–1200 kDa) and trivalent cations (Fe3+ and Al3+). Further investigation reveals that the TB-EPS fraction caused aggregation of particles by bridging and sweep flocculation.  相似文献   

15.
A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l−1) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l−1) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0–6.5) and the pyrolysis temperature was found to be at 116.73 °C with an enthalpy (ΔH) of 1330.72 Jg−1. MALDI TOF mass spectrometric result suggests that polymer contained Hex5Pent3 as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.  相似文献   

16.
The enhancements of electrolysis-pretreated conditioning were investigated in this study. Normalized capillary suction time (CST) was used to evaluate sludge dewaterability. Extracellular polymeric substance (EPS) concentration, viscosity and scanning electron microscopy (SEM) were determined to explain the observed changes in conditioning process. It indicated that pretreatment at 50 v and 5 min with Ti/RuO2 anode was determined to be the optimal condition, which generated the lowest normalized CST and optimal soluble EPS concentration, leading to the decreasing of viscosity. EPS had positive correlation with the normalized CST. Subjecting to a combination of electrolysis pretreatment and flocculants conditioning, 50% dosage of cationic polyacrylamide (PAM) could be reduced. When co-conditioned with electrolysis and polymerization ferric sulfate (PFS), it did not present any clear advantages over PFS conditioning alone. Furthermore, SEM investigation indicated that electrolysis pretreatment could rupture sludge, release the interstitial water and extracellular substances, especially protein and polysaccharide, and consequently enhance its dewaterability.  相似文献   

17.
The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little is generally known about how antigens and adjuvants interact at the molecular level. The aim of this study was to elucidate the mechanisms of interactions between the equally sized, but oppositely charged model protein antigens α-lactalbumin and lysozyme, and i) the clinically tested cationic liposomal adjuvant CAF01 composed of cationic dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6′-dibehenate (TDB) or ii) the neutral adjuvant formulation NAF01, where DDA was replaced with zwitterionic distearoylphosphatidylcholine (DSPC). The effect of liposome charge, bilayer rigidity, isoelectric point and antigen-to-lipid ratio was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, intrinsic fluorescence and Langmuir monolayers. The net anionic α-lactalbumin adsorbed onto the cationic liposomes, while there was no measureable attractive interaction with the zwitterionic liposomes. In contrast, the net cationic lysozyme showed very little interaction with either types of liposome. Adsorption of α-lactalbumin altered its tertiary structure, affected lipid membrane packing below and above the phase transition temperature, and neutralized the liposomal surface charge, resulting in reduced colloidal stability and liposome aggregation. Langmuir studies revealed that α-lactalbumin was not squeezed out of DDA monolayers upon compression, which suggests additional hydrophobic interactions.  相似文献   

18.
The extracellular polysaccharides (EPSs) isolated from Porphyridium cruentum were degraded by hermetical-microwave and H2O2 under ultrasonic waves. Six products were obtained with molecular weights of 6.53, 256, 606, 802.6, 903.3 and 1002 kDa. The antitumor and immunomodulatory activities of different-molecular-weight (MW) polysaccharides were evaluated by the S180-tumor-bearing mouse model in vivo and peritoneal macrophage activation in vitro. The degraded EPSs all showed clear immunomodulation to different extents. The MW of the EPSs had a notable effect on their activity. The 6.53-kDa fragment had the strongest immunoenhancing activity. Different doses of EPS all inhibited the growth of the implanted S180 tumor. The tumor inhibition index at high, middle and low doses was 53.3%, 47.5% and 40.5%, respectively. In addition, three different concentrations of EPS significantly increased lymphocyte proliferation, which indicated the unique mechanism of the antitumor effect of EPS.  相似文献   

19.
The effects of Astragalus polysaccharides (APS) on the immune response in pigs immunized with foot-and-mouth disease virus (FMDV) vaccine were investigated. Fifteen pigs were randomly divided into five groups. Four groups were vaccinated with a FMDV inactivated vaccine. Pigs in three experimental groups were administered varying doses of APS (APS1, 5 mg/kg; APS2, 10 mg/kg; APS3, 20 mg/kg). The influence of APS on the number of CD3+CD4CD8+ cytotoxic T cells, CD3+CD4+CD8+ T helper memory cells, and CD3CD4CD8+ natural killer cells among peripheral blood lymphocytes (PBL) in the three APS groups were significant compared to the vaccine group. In vitro stimulation of PBL by Con A and LPS in APS groups induced a stronger proliferative response at 2 and 6 weeks post-inoculation (PI). APS markedly increased the titer of FMDV-specific antibody in a dose-dependent manner, and up-regulated mRNA expression of IFN-γ and IL-6. APS could potentially be used as an immunomodulator for a FMDV vaccine and provide better protection against FMDV.  相似文献   

20.
Based on our previous research, sulfated modification conditions of Tremella polysaccharide (TPS), the chlorosulfonic acid to pyridine (CSA-Pry) ratio, reaction temperature and time, were optimized by L9 (34) orthogonal design taking the yield and degree of sulfation (DS) of modifiers as indexes. Two TPSs, TPStp and TPS70c, were modified under optimized conditions. The effects of two modifiers, sTPStp and sTPS70c, on cellular infectivity of NDV were determined by MTT method taking the non-modified TPStp, TPStc and TPS70c as controls. The results showed that the optimized modification conditions were reaction temperature of 80 °C, CSA-Pry ratio of 1:6 and reaction time of 1.5 h. Five polysaccharides at proper concentrations could significantly inhibit the infectivity of NDV to CEF. The virus inhibitory rates of sTPStp at 1.563 μg mL−1 group were the highest and significantly higher than those of other three non-modified polysaccharide groups in three sample-adding modes. This indicated that sulfated modification could significantly improve the antiviral activity of TPS. sTPStp possessed the best efficacy and would be as a component of antiviral polysaccharide drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号