首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the early hepatic biochemical and ultrastructural responses to insulin replacement in streptozotocin-diabetic rats and insulin withdrawal from insulin-maintained diabetic rats. Insulin administration rapidly lowered plasma glucose and the elevated glucose-6-phosphatase (G-6-Pase) specific activity of the diabetic rats. However, hepatic glycogen did not increase until after 3 hr of insulin treatment. Hepatic ultrastructure responded to insulin replacement after the decline in glucose and G-6-Pase. This was seen in periportal hepatocytes as a reduction in the close association between smooth endoplasmic reticulum (SER) and glycogen particles in the diabetic animals. The treated rats showed hepatic SER restricted to the periphery of glycogen masses, as is characteristic of these cells from normal rats, in many cells by 6 hr and all cells by 18 hr. Insulin withdrawal from insulin-treated diabetic rats elicited nearly a total reversal of the above events. Plasma insulin declined to a value half that of the normal rats by 6 hr after withdrawal; concurrently, plasma glucose rose sharply to hyperglycemic values as hepatic glycogen content dropped. Following the rise in plasma glucose and fall in glycogen content, G-6-Pase specific activity increased and by 16 hr reached the high values characteristic of the diabetic animal. Hepatic ultrastructure was also changed as evidenced by an intrusion of elements of the SER into the dense glycogen masses; the result was dispersed glycogen closely associated with SER as seen in the diabetic animal. It is concluded that the hepatic response to insulin replacement in diabetic animals and diabetic onset in insulin-withdrawn animals is rapid and occurs through defined stages.  相似文献   

2.
The regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo and in tissue culture cells in situ were compared. In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. In contrast, a 5-h period of hyperinsulinemia resulted in a suppression of both G-6-Pase catalytic subunit and G-6-P transporter gene expression. Similarly, insulin suppressed G-6-Pase catalytic subunit and G-6-P transporter gene expression in H4IIE hepatoma cells. However, the magnitude of the insulin effect was much greater on G-6-Pase catalytic subunit gene expression and was manifested more rapidly. Furthermore, cAMP stimulated G-6-Pase catalytic subunit expression in H4IIE cells and in primary hepatocytes but had no effect on G-6-P transporter expression. These results suggest that the relative control strengths of the G-6-Pase catalytic subunit and G-6-P transporter in the G-6-Pase reaction are likely to vary depending on the in vivo environment.  相似文献   

3.
Activities of glucose-6-phosphatase (G-6-Pase) and other phosphatases were determined in nuclei, nuclear membrane and microsomal fractions and subfractions, and condensed chromatin isolated from the liver of adult, newly born and prenatal rats. The purity of the fractions was controlled by electron microscopic morphometry and by measurement of various marker enzymes. The specific G-6-Pase activity of the nuclear membranes was found to be about 60% that of the microsomes. However, when calculated on the basis of the phospholipid content, all fractions had similar activities. Determinations of G-6-Pase enrichments and recoveries were also made. The correspondence of the hydrolysing activities of glucose-6-phosphate, mannose-6-phosphate, and inorganic pyrophosphate, together with various phosphotransferases, showed the same association of the G-6-Pase with these enzymes in the nuclear envelope as in the microsomal membranes. G-6-Pase was also demonstrated in the fractions by cytochemistry, and the activity was localized alongside the cisternal surfaces of both, inner and outer, nuclear membrane. ‘Free’ inner nuclear membrane fragments contained also G-6-Pase. No activity was observed at the nuclear pore complexes. Both, nuclear and microsomal membranes revealed a parallel rapid perinatal increase of G-6-Pase activity climaxing at 23 to 28 h after birth. Triton-X-100 treatment of isolated nuclei, which was found not to selectively release outer nuclear membranes, resulted in a great decrease of G-6-Pase activity as well as in losses of membrane phospholipids. The results clarify the divergence of earlier reports concerning the presence of G-6-Pase in the perinuclear cisterna and add biochemical evidence to the morphologically derived view of the nuclear envelope as being a special form of the ER system.  相似文献   

4.
The amount and distribution of glycogen as well as the activity of glucose-6-phosphatase (G-6-Pase) in the livers of rats were analyzed by biochemical and/or histochemical techniques. During the first 5 hr of the light cycle, livers of rats were sampled prior to and 30 min following an injection of compound 48/80 or Ringer's solution. Glycogen decreased significantly in response to sampling; however, treatment with compound 48/80 provoked an additional significant decrease in hepatic glycogen. These differences occurred irrespective of the time during the 5 hr that this was studied. The livers of the majority of the rats treated with compound 48/80 displayed a periportal distribution of glycogen, while those treated with Ringer's showed a more uniform pattern. Hepatic G-6-Pase activity was unchanged in either the Ringer's or compound 48/80 treated rats. These results indicated that (1) the significant glycogenolytic response occurs independently of the amount of glycogen present, (2) G-6-Pase activity is not affected within 30 min following the stimulation of glycogenolysis, (3) variation in glycogen patterns during depletion depends on the nature of the stimulus and/or degree of response, and (4) the amount of glycogen available for release is limited.  相似文献   

5.
Clinical and experimental studies have shown that myocardial dysfunction is an early event during endotoxemia or septic shock. Several reports have shown that rodents submitted to a mild heat shock become resistant to lipopolysaccharides (LPS) or sepsis. The most abundant of the heat shock proteins (HSP), the HSP70, has been postulated to be the principal mediator of the observed protection against endotoxemia. We have tested the hypothesis that a protective effect against endotoxemia is achievable by the increased presence of the HSP70 in rodent cardiomyocytes. We have found that a transgenic mouse line overexpressing the rat HSP70 gene in the heart exhibits an increased tolerance to LPS treatment (control estimated survival function [S(t)] = 0.538, transgenic S(t) = 0.787, P < 0.05). Interestingly, the increased presence of the HSP70 in the hearts of these mice results in a decrease in the activation of the inducible nitric oxide synthase (iNOS) after LPS treatment. We conclude that HSP70 protection against LPS is most probably mediated through the modulation of iNOS activation and the subsequent decreased synthesis of nitric oxide in cardiomyocytes.  相似文献   

6.
The enzyme glucose-6-phosphatase (G-6-Pase) catalyzes the hydrolysis of glucose-6-phosphate (G-6-P) to glucose. This is one of the key steps in gluconeogenesis and is critically important in maintaining stable blood glucose levels in most mammals. G-6-Pase is primarily found in the endoplasmic reticulum (ER) of hepatocytes and can easily be studied using isolated microsomes prepared from liver ER. A three-part undergraduate laboratory exercise uses rat liver microsomes to focus on the enzymatic analysis of G-6-Pase. The assessment of G-6-Pase activity is conducted using a stopped assay protocol combined with a colorimetric determination of inorganic phosphate (Pi) levels. The laboratory exercise was designed to carry out an independent inhibition investigation using orthovanadate, a competitive inhibitor of G-6-Pase with potential clinical importance. The format of the three-part investigation provides a useful mechanism for demonstrating enzyme kinetics and competitive inhibition using an enzyme that is important for carbohydrate metabolism and glycogen storage disease.  相似文献   

7.
This study was conducted to test the hypothesis of the activation of glucose-6-phosphatase (G-6-Pase) in situations where the liver is supposed to sustain high glucose supply, such as during the counterregulatory response to hypoglycemia. Hypoglycemia was induced by insulin infusion in anesthetized rats. Despite hyperinsulinemia, endogenous glucose production (EGP), assessed by [3-(3)H]glucose tracer dilution, was paradoxically not suppressed in hypoglycemic rats. G-6-Pase activity, assayed in a freeze-clamped liver lobe, was increased by 30% in hypoglycemia (P < 0.01 vs. saline-infused controls). Infusion of epinephrine (1 microg x kg(-1) x min(-1)) in normal rats induced a dramatic 80% increase in EGP and a 60% increase in G-6-Pase activity. In contrast, infusion of dexamethasone had no effect on these parameters. Similar insulin-induced hypoglycemia experiments performed in adrenalectomized rats did not induce any stimulation of G-6-Pase. Infusion of epinephrine in adrenalectomized rats restored a stimulation of G-6-Pase similar to that triggered by hypoglycemia in normal rats. These results strongly suggest that specific activatory mechanisms of G-6-Pase take place and contribute to EGP in situations where the latter is supposed to be sustained.  相似文献   

8.
This study evaluated the hypothesis that the repertoire of cellular events that underlie circulatory fatality during endotoxemia may entail mitochondrial respiratory enzyme dysfunction, followed by the release of cytochrome c to the cytosol that triggers the activation of caspase cascades, leading to apoptotic cell death in the rostral ventrolateral medulla (RVLM) where sympathetic premotor neurons responsible for maintaining vasomotor tone are located. In adult Sprague-Dawley rats maintained under propofol anesthesia, nucleosomal DNA fragmentation was detected in the RVLM in a temporal profile that coincided positively with the progression of cardiovascular depression during experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS). LPS also induced nitric oxide (NO) and superoxide (O(2)(-)) production, depressed mitochondrial Complex I and IV activity, promoted the release of cytochrome c from mitochondria to cytosol, upregulated the cytosolic expression of activated caspase-9 and -3, or increased caspase-3 enzyme activity in the RVLM. Microinjection bilaterally into the RVLM of an inducible nitric oxide synthase (iNOS) blocker, S-methylisothiourea, or a superoxide dismutase mimetic, Tempol, significantly blunted these apoptotic cellular events and antagonized the cardiovascular depression during endotoxemia. We conclude that caspase-dependent apoptotic cell death that results from NO- and O(2)(-)-associated mitochondrial signaling in the RVLM may underlie fatal cardiovascular depression during endotoxemia.  相似文献   

9.
Sepsis involves a heterogeneous class of syndromes, and septic shock, a severe form of sepsis, is associated with the development of progressive damage in multiple organs. The present study examined the time-dependent alterations of endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) levels in liver tissue in a septic rat model. Healthy male Wistar rats aged 15 weeks received 15 mg/kg lipopolysaccharide (LPS) and were sacrificed at different time points (1, 3, 6, and 10 hrs after treatment). Rats that did not receive LPS were considered to be controls. A 28-fold increase in the ET-1 level was observed in liver tissue 10 hrs after LPS administration. VEGF was also altered in hepatic tissue in a time-dependent manner. A gradual increase of VEGF expression in liver tissue after LPS administration was observed. Expression of Flt-1, the vascular permeability receptor of VEGF, was also increased in liver tissue after LPS administration. ET-1 is a potent vasoconstrictor and, therefore, may play a role in the regulation of hepatic perfusion in a sepsis model. On the other hand, VEGF may be involved in capillary leakage in liver tissue after LPS administration. The present findings suggest that there might be a loss of balance between the ET-1 and VEGF levels in the septic liver at different time points, which could contribute to the pathogenesis of acute liver injury in endotoxemia.  相似文献   

10.
Explants of adult mouse jejunum have been maintained in organ culture with or without fructose added to the medium in order to stimulate the intestinal glucose-6-phosphatase (G-6-Pase). When the fructose is added, at the beginning of the culture, a three-fold increase of G-6-Pase in measured during the first 24 h. If the fructose is added after 24 h of culture, no significant increase of the G-6-Pase is registered in comparison with the controls. Proteins, DNA content and dissacharidase activities are not modified during the culture. Alkaline phosphatase activity presents a twofold increase in the controls and stimulated explants. The ultrastructural localization of the G-6-Pase is not altered during the culture.  相似文献   

11.
The role of IFN-gamma in the pathology of experimental endotoxemia   总被引:21,自引:0,他引:21  
Proinflammatory cytokines provoked by circulating bacterial LPS mediate many of the destructive host responses characteristic of septic shock. To determine if the lymphokine IFN-gamma has a similar pathogenic role during endotoxic shock, mice were pretreated with murine rIFN-gamma (rMuIFN-gamma) at various times relative to challenge with Salmonella enteritidis LPS. Subsequent mortality was increased when rMuIFN-gamma was administered before or up to 4 h after endotoxin challenge. Pretreatment with rMuIFN-gamma resulted in nearly fivefold increases in serum TNF during endotoxemia, but TNF levels were unaffected by IFN administered after endotoxin. The increased levels of serum TNF probably reflected enhanced translation of this factor, as tissue expression of TNF mRNA did not increase correspondingly in IFN-pretreated mice. To examine the role of IFN-gamma produced endogenously during endotoxemia, mice were pretreated with 0.5 mg of anti-IFN-gamma mAb before endotoxin injection. This treatment significantly reduced mortality from endotoxic shock but caused only minor decreases in serum TNF. Anti-IFN-gamma administered 2 h after endotoxin was similarly protective. These results demonstrate a significant role for IFN-gamma in the pathology of septic shock, both indirectly as an activator of monokines known to promote lethality and possibly by other, late-acting mechanisms.  相似文献   

12.
Daily administration of ferric nitrilotriacetate (5 ml/Kg b.w./day i.p.) induces in a few weeks liver siderosis; continuous treatment of the same animals with the carcinogen 2-Acetaminofluorene (300 mg/Kg of diet) results in the appearance of several iron devoid hyperplastic areas or nodules, where enzyme histochemistry reveals gamma-GT activity as well as G-6-Pase disappearance. The perfusion of the liver with calcium-free Hanks solution plus collagenase allows an easy isolation of the hepatocytes, whereas a partial separation of the different kinds of cells can be achieved by isopycnic gradient sedimentation.  相似文献   

13.
Bile acids are important regulatory molecules that can activate specific nuclear receptors and cell signaling pathways in the liver and gastrointestinal tract. In the current study, the chronic bile fistula (CBF) rat model and primary rat hepatocytes (PRH) were used to study the regulation of gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) and the gene encoding short heterodimeric partner (SHP) by taurocholate (TCA). The intestinal infusion of TCA into the CBF rat rapidly (1 h) activated the AKT (∼9-fold) and ERK1/2 (3- to 5-fold) signaling pathways, downregulated (∼50%, 30 min) the mRNA levels of PEPCK and G-6-Pase, and induced (14-fold in 3 h) SHP mRNA. TCA rapidly (∼50%, 1–2 h) downregulated PEPCK and G-6-Pase mRNA levels in PRH. The downregulation of these genes by TCA was blocked by pretreatment of PRH with pertussis toxin (PTX). In PRH, TCA plus insulin showed a significantly stronger inhibition of glucose secretion/synthesis from lactate and pyruvate than either alone. The induction of SHP mRNA in PRH was strongly blocked by inhibition of PI3 kinase or PKCζ by specific chemical inhibitors or knockdown of PKCζ by siRNA encoded by a recombinant lentivirus. Activation of the insulin signaling pathway appears to be linked to the upregulation of farnesoid X receptor functional activity and SHP induction.  相似文献   

14.
T3 administration to rats exerts quite different effects on enzyme activities associated to liver microsomal membranes such as G-6-Pase, Mg ATPase and Ca2(+)-dependent ATPase: in fact G-6-Pase activity is significantly enhanced, Mg ATPase is not affected whereas Ca2(+)-dependent ATPase is drastically inhibited. The T3 induced decrease in Ca2(+)-dependent ATPase activity is associated with a net reduction (to about 50% with respect to controls) of the Ca2+ sequestration in liver microsomal vesicles. The enhanced level of inorganic phosphate in the endoplasmic reticulum due to the stimulation of G-6-Pase activity does not significantly affect the uptake of calcium in microsomal vesicles. The decreased Ca2(+)-dependent ATPase activity is associated to an enhanced level of the enzyme in the phosphorylated form (E-P). This suggests that in liver preparations from T3 treated rats the turnover of ATP and cleavage of E-P is reduced, thus resulting in the accumulation of the phosphorylated intermediate. The accumulation of E-P is in agreement with the inhibition of the calcium sequestration since the active transport of this cation in microsomal membranes requires the hydrolysis of the E-P complex.  相似文献   

15.
Summary Alterations in pulmonary surfactant are partly responsible for the respiratory insufficiency seen under septic shock process. We have used an experimental model of LPS-induced shock in rats to examine the cells responsible for the pulmonary surfactant synthesis and its relationship to lung injury. (14C)Choline incorporation into phosphatidylcholine was significantly reduced in lung homogenates or type II cells obtained from LPS-treated animals. Addition of LPS in vitro fails to increase (14C)choline incorporation in type II cells obtained from LPS-treated animals. We suggest that this depression of pulmonary phosphatidylcholine synthesis may partly explain the occurrence of respiratory failure with septic shock.  相似文献   

16.
Septic shock is characterized by hypotension and a hyporeactive response to vasopressor agents. The pathogenesis is due to vascular leaks and an increased synthesis of cytokines and nitric oxide (NO). The present study examined the time-dependent alterations of endothelin-1 (ET-1) and the expression of NO synthase (NOS) in lung tissue in a septic rat model. Normal Sprague-Dawley (SD) rats aged 10 weeks received 15 mg/kg lipopolysaccharide (LPS) and then were sacrificed at different time points (1, 3, 6, and 10 hrs). Rats that did not receive LPS were considered to be controls. Both systolic and diastolic pressure decreased in SD rats after LPS administration. Time-dependent onset of features of acute lung injury, such as the infiltration of inflammatory cells and thickening of alveolar septa, were seen in rats that received LPS. A 2.8-fold increase in the expression of preproET-1 level was observed in lung tissue 6 hrs after LPS administration. The expression of endothelial NOS (eNOS) was also altered in lung tissue in a time-dependent fashion. After the administration of LPS, there was a 16-fold increase in the expression of eNOS mRNA. The peak expression of inducible NOS (iNOS) in lung tissue specimens obtained from rats that received LPS was 45-fold higher than that in control rats. ET-1 is a potent vasoconstrictor and thereby may play an important role in the pathogenesis of acute lung injury in a septic rat model. The increased expression of NOS may result in excess NO production and may also play a role in the pulmonary complications of endotoxemia.  相似文献   

17.
The administration of the gram-negative bacterial cell wall component lipopolysaccharide (LPS) to experimental animals results in the dramatic up-regulation of the inducible form of nitric oxide synthase (iNOS). The resulting sustained overproduction of nitric oxide (NO) is thought to contribute to the septic shock-like state in these animals. Numerous studies have characterized the kinetics and magnitude of expression of iNOS as well as the production of NO-derived nitrite and nitrate. However, little is known regarding the ability of iNOS-derived NO to interact with physiological substrates such as thiols to yield biologically active S-nitrosothiols during endotoxemia. It has been hypothesized that these relatively stable, vaso-active compounds may serve as a storage system for NO and they may thus play an important role in the pathophysiology associated with endotoxemia. In the present study, we demonstrate that 5 h after i.p. administration of LPS in rats, circulating S-nitrosoalbumin was increased by approximately 3. 4-fold over control. S-nitrosohemoglobin was increased by approximately 25-fold over controls and by threefold over S-nitrosoalbumin. No increase in low molecular weight S-nitrosothiols (i.e., S-nitrosoglutathione and S-nitrosocysteine) could be detected under our experimental conditions. Taken together these data demonstrate that endotoxemia dramatically enhances circulating S-nitrosothiol formation.  相似文献   

18.
Atrial natriuretic peptide (ANP) is a hormone secreted in response to atrial or ventricular volume expansion and pressure overload, respectively. However, it has been found in studies with animals and patients an increase in ANP plasma concentration, during advanced septic shock, despite the fall in mean arterial pressure (MAP).

Several studies support the hypothesis that NO may be involved in the regulation of ANP release. Since NO may have an effect on ANP release, we hypothesized that NO pathway may participate in the control of the ANP release induced by the endotoxemic shock. Thus, the purpose of the present study was to assess the effect of the intravenous (i.v.) and intracereboventricular (i.c.v.) administration of aminoguanidine, an iNOS blocker, on plasma ANP levels and MAP during experimental endotoxemic shock.

Experiments were performed on adult male Wistar rats weighing 180–240 g. Rats were injected i.v. by bolus injection with 1.5 mg/kg of Lipopolysaccharide (LPS) or saline (0.5 mL) and were decapitated 2, 4 and 6 h after LPS injection for ANP determination by radioimmunoassay. In a separate set of experiments, rats received intravenous (i.v.) (100 mg/kg) or intracerebroventricular (i.c.v.) (250 μg in a final volume of 2 μL) injection of aminoguanidine (AG). Thirty minutes after the i.c.v. or i.v. injections, animals received LPS and were decapitated 2, 4 and 6 h later to determine plasma ANP concentration. In the two set of experiments MAP and heart rate (HR) were measured each 15 min for a period of 6 h using a polygraph.

When animals were injected with LPS, a reduction (p < 0.01) in MPA and an increase in HR occurred. A significant increase in plasma ANP concentration occurred, coinciding with the period of drop in blood pressure.

We found a significant increase in plasma ANP concentration after AG plus LPS injection, when compared to the rats treated with LPS plus saline. Further, the administration of AG plus LPS attenuated the decrease in the MAP after LPS and attenuated the increase in the HR when compared to the rats treated with LPS plus saline.

Our study suggests that inducible NOS pathway may activate an inhibitory control mechanism that attenuates ANP secretion, which is not regulated by the changes in blood pressure.  相似文献   


19.
本文研究了无血清培养高密度猪肝细胞的形态和功能变化。将分离的肝细胞以高密度(1×10~7/ml)培养在含激素、多种生长因子和营养成分的无血清培养基中,动态观察培养7天中肝细胞形态、活率、蛋白质合成功能、G-6-Pase活性、安定转化功能及LDH含量;同时以无血清培养低密度(5×10~5/ml)肝细胞作为对照组。研究结果表明:高密度培养的 肝细胞各项功能较低密度培养的肝细胞为低;高密度培养的肝细胞的形态、蛋白质合成功能在培养7天中保持稳定;活率随着培养时间的延长而下降,但均高于90%;安定转化功能在培养第2、3天最强;G-6-Pase活性在培养1天后明显下降,然后维持在较低水平;LDH含量在第1、2、3天较高。  相似文献   

20.
The pro-inflammatory activity of Tumor necrosis factor-alpha (TNF-alpha) together with tissue hypoxia determine the clinical outcome in sepsis and septic shock. p38 MAPKinase is the primary intracellular signaling pathway that regulates lipopolysaccharide (LPS)-induced TNF-alpha biosynthesis, however, the effect of hypoxia on LPS mediated activation of p38 is not known. Here we report that SB203580, a specific p38 MAPK inhibitor, which completely abolished LPS-induced TNF-alpha expression by the mouse macrophage cell RAW264.7 in normoxic conditions, lost the inhibitory effect in hypoxic conditions. Hypoxia did not modulate expression of p38 MAPK, but increased that of p-MK2, a downstream target of p38 MAPK. In LPS induced endotoxemia mice model SB203580 had no inhibitory effect on the serum levels of TNF-alpha. Furthermore, hypoxia inducible factor-1alpha (HIF-1alpha) was detected in vivo after LPS administration but its expression was not affected by SB203580. Our data indicate that LPS induced p38 MAPK activation was enhanced by hypoxia and consequently increased TNF-alpha secretion. Furthermore, the induction of HIF-1alpha in mice with endotoxemia suggested a synergistic effect on p38 mediated TNF-alpha expression. These findings provide new insights on the pathophysiological effects of hypoxia in sepsis and septic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号