首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3 h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.  相似文献   

2.
BackgroundLaccase is one member of the blue multicopper oxidase family. It can catalyze the oxidation of various substrates. The Thermus thermophilus SG0.5JP17-16 laccase (lacTT) is thermostable, pH-stable, and high tolerance to halides, and can decolorize the synthetic dyes. In lacTT, the function of the loop 6 constructing the substrate-binding pocket wasn't clear.MethodsThe residues Asp394 and Asp396 located in loop 6, and were used to probe how the loop 6 influenced catalytic properties of the laccase. Site-directed mutagenesis was performed for two amino acids. Kinetic assay was utilized to characterize the catalytic efficiency of mutants. Mutants with different catalytic activities were used to decolorize the synthetic dyes to clarify the relationship between the catalytic efficiency and dye decolorization. Redox potential, structural and spectral analyses were performed to explain the differences in laccase activity between wild type and mutant enzymes.ResultsD394M, D394E and D394R mutants with the lower laccase activity displayed a decreased decolorization efficiency, while D396A, D396M and D396E mutant enzymes with higher catalytic efficiency decolorized the synthetic dye more efficiently than the wild type enzyme.ConclusionsThe pocket loop 6 might experience a conformational dynamics. The D394 residue controlled this conformation change by amino acid interaction networks containing the D396 residue at the entrance of substrate channel.General significancesThese studies may provide clues to improve the activity of the laccase for the better use in industrial applications, and/or contribute to further understanding the mechanism of laccase oxidation on the substrate.  相似文献   

3.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

4.
A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.  相似文献   

5.
This was the first study that achieved a narrowing of the substrate specificity of water soluble glucose dehydrogenase harboring pyrroloquinoline quinone as their prosthetic group, PQQGDH-B. We conducted the introduction of amino acid substitutions into the loop 6BC region of the enzyme, which made up the active site cleft without directly interacting with the substrate, and constructed a series of site directed mutants. Among these mutants, Asn452Thr showed the least narrowed substrate specificity while retaining a similar catalytic efficiency, thermal stability and EDTA tolerance as the wild-type enzyme. The relative activities of mutant enzyme with lactose were lower than that of the wild-type enzyme. The altered substrate specificity profile of the mutant enzyme was found to be mainly due to increase in Km value for substrate than glucose. The predicted 3D structures of Asn452Thr and the wild-type enzyme indicated that the most significant impact of the amino acid substitution was observed in the interaction between the 6BC loop region with lactose.  相似文献   

6.
Prolyl oligopeptidase (POP) has emerged as a drug target for neurological diseases. A flexible loop structure comprising loop A (res. 189–209) and loop B (res. 577–608) at the domain interface is implicated in substrate entry to the active site. Here we determined kinetic and structural properties of POP with mutations in loop A, loop B, and in two additional flexible loops (the catalytic His loop, propeller Asp/Glu loop). POP lacking loop A proved to be an inefficient enzyme, as did POP with a mutation in loop B (T590C). Both variants displayed an altered substrate preference profile, with reduced ligand binding capacity. Conversely, the T202C mutation increased the flexibility of loop A, enhancing the catalytic efficiency beyond that of the native enzyme. The T590C mutation in loop B increased the preference for shorter peptides, indicating a role in substrate gating. Loop A and the His loop are disordered in the H680A mutant crystal structure, as seen in previous bacterial POP structures, implying coordinated structural dynamics of these loops. Unlike native POP, variants with a malfunctioning loop A were not inhibited by a 17-mer peptide that may bind non-productively to an exosite involving loop A. Biophysical studies suggest a predominantly closed resting state for POP with higher flexibility at the physiological temperature. The flexible loop A, loop B and His loop system at the active site is the main regulator of substrate gating and specificity and represents a new inhibitor target.  相似文献   

7.
Endo-beta-1,4-xylanases of the family 11 glycosyl-hydrolases are catalytically active over a wide range of pH. Xyl1 from Streptomyces sp. S38 belongs to this family, and its optimum pH for enzymatic activity is 6. Xyn11 from Bacillus agaradhaerens and XylJ from Bacillus sp. 41M-1 share 85% sequence identity and have been described as highly alkalophilic enzymes. In an attempt to better understand the alkalophilic adaptation of xylanases, the three-dimensional structures of Xyn11 and Xyl1 were compared. This comparison highlighted an increased number of salt-bridges and the presence of more charged residues in the catalytic cleft as well as an eight-residue-longer loop in the alkalophilic xylanase Xyn11. Some of these charges were introduced in the structure of Xyl1 by site-directed mutagenesis with substitutions Y16D, S18E, G50R, N92D, A135Q, E139K, and Y186E. Furthermore, the eight additional loop residues of Xyn11 were introduced in the homologous loop of Xyl1. In addition, the coding sequence of the XylJ catalytic domain was synthesized by recursive PCR, expressed in a Streptomyces host, purified, and characterized together with the Xyl1 mutants. The Y186E substitution inactivated Xyl1, but the activity was restored when this mutation was combined with the G50R or S18E substitutions. Interestingly, the E139K mutation raised the optimum pH of Xyl1 from 6 to 7.5 but had no effect when combined with the N92D substitution. Modeling studies identified the possible formation of an interaction between the introduced lysine and the substrate, which could be eliminated by the formation of a putative salt-bridge in the N92D/E139K mutant.  相似文献   

8.
Many protein kinases are activated by phosphorylation in a highly conserved region of their catalytic subunit, termed activation loop. Phosphorylase kinase is constitutively active without the requirement for phosphorylation of residues in the activation loop. The residue which plays an analogous role to the phosphorylatable residues in other protein kinases is Glu182, which makes contacts to a highly conserved Arg148. In turn, Arg148 adjacent to the catalytic Asp149, enabling information to be transmitted from the activation loop to the catalytic machinery. The double mutant R148A/E182S has been kinetically characterized. The mutation resulted in an approximate 16- to 22-fold decrease in the k cat/K m value of the enzyme. The kinetic data, discussed in the light of the structural data from previously determined complexes of the enzyme, lead to the suggestion that the activation loop has a major role in substrate binding but also in correct orientation of the groups participating in catalysis.  相似文献   

9.
大肠杆菌碱性磷酸酶的体外定向进化研究   总被引:8,自引:1,他引:7  
大肠杆菌碱性磷酸酶(E.coli alkaline phosphatase, EAP, EC 3.1.3.1)是一个非特异性二聚体磷酸单酯酶. 采用易错聚合酶链反应(error prone PCR)的方法,在原有高活力突变株的基础上,对EAP远离活性中心催化三联体的区域进行定向进化,经两轮error prone PCR,获得催化活力较亲本D101S突变株提高3倍、较野生型酶提高35倍的进化酶4-186,并对该酶的催化动力学特征进行了分析. 进化酶基因的DNA测序表明4-186含两个有义氨基酸置换:K167R和S374C,二者既不位于底物结合位点,也不位于酶的金属离子结合位点.  相似文献   

10.
The Ca(2+) binding 70-80 loop of factor X (fX) contains one basic (Arg(71)) and three acidic (Glu(74), Glu(76), and Glu(77)) residues whose contributions to the zymogenic and enzymatic properties of the protein have not been evaluated. We prepared four Ala substitution mutants of fX (R71A, E74A, E76A, and E77A) and characterized their activation kinetics by the factor VIIa and factor IXa in both the absence and presence of cofactors. Factor VIIa exhibited normal activity toward E74A and E76A and less than a twofold impaired activity toward R71A and E77A in both the absence and presence of tissue factor. Similarly, factor IXa in the absence of factor VIIIa exhibited normal activity toward both E74A and E76A; however, its activity toward R71A and E77A was impaired approximately two- to threefold. In the presence of factor VIIIa, factor IX activated all mutants with approximately two- to fivefold impaired catalytic efficiency. In contrast to changes in their zymogenic properties, all mutant enzymes exhibited normal affinities for factor Va, and catalyzed the conversion of prothrombin to thrombin with normal catalytic efficiencies. However, further studies revealed that the affinity of mutant enzymes for interaction with metal ions Na(+) and Ca(2+) was impaired. These results suggest that although charged residues of the 70-80 loop play an insignificant role in fX recognition by the factor VIIa-tissue factor complex, they are critical for the substrate recognition by factor IXa in the intrinsic Xase complex. The results further suggest that mutant residues do not play a specific role in the catalytic function of fXa in the prothrombinase complex.  相似文献   

11.
BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5′GCTCTTC N1/N4 3′. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).  相似文献   

12.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

13.
Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants' temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer. The crystal structures of one truncated variant (cp283Δ7) in the apo-form determined at 1.49 Å resolution and with a bound phosphonate inhibitor at 1.69 Å resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.  相似文献   

14.
Unlike microbial sialidases, mammalian sialidases possess strict substrate specificity, for example the human membrane-associated sialidase, which hydrolyzes only gangliosides. To cast light on the molecular basis of this narrow substrate preference, predicted active site amino-acid residues of the human membrane sialidase were altered by site-directed mutagenesis. When compared with the active site amino-acid residues proposed for Salmonella typhimurium sialidase, only five out of 13 residues were found to be different to the human enzyme, these being located upstream of the putative transmembrane region. Alteration of seven residues, including these five, was followed by transient expression of the mutant enzymes in COS-1 cells and characterization of their kinetic properties using various substrates. Substitution of glutamic acid (at position 51) by aspartic acid and of arginine (at position 114) by glutamine or alanine resulted in retention of good catalytic efficiency toward ganglioside substrates, whereas other substitutions caused a marked reduction. The mutant enzyme E51D exhibited an increase in hydrolytic activity towards GM2 as well as sialyllactose (which are poor substrates for the wild-type) with change to a lower Km and a higher Vmax. R114Q demonstrated a substrate specificity shift in the same direction as E51D, whereas R114A enhanced the preference for gangliosides GD3 and GD1a that are effectively hydrolyzed by the wild-type. The inhibition experiments using 2-deoxy-2,3-didehydro-N-acetylneuraminic acid were consistent with the results in the alteration of substrate specificity. The findings suggest that putative active-site residues of the human membrane sialidase contribute to its substrate specificity.  相似文献   

15.
Free methionine-R-sulfoxide reductase (fRMsr) reduces free methionine R-sulfoxide back to methionine, but its catalytic mechanism is poorly understood. Here, we have determined the crystal structures of the reduced, substrate-bound, and oxidized forms of fRMsr from Staphylococcus aureus. Our structural and biochemical analyses suggest the catalytic mechanism of fRMsr in which Cys102 functions as the catalytic residue and Cys68 as the resolving Cys that forms a disulfide bond with Cys102. Cys78, previously thought to be a catalytic Cys, is a non-essential residue for catalytic function. Additionally, our structures provide insights into the enzyme-substrate interaction and the role of active site residues in substrate binding. Structural comparison reveals that conformational changes occur in the active site during catalysis, particularly in the loop of residues 97–106 containing the catalytic Cys102. We have also crystallized a complex between fRMsr and isopropyl alcohol, which acts as a competitive inhibitor for the enzyme. This isopropyl alcohol-bound structure helps us to understand the inhibitory mechanism of fRMsr. Our structural and enzymatic analyses suggest that a branched methyl group in alcohol seems important for competitive inhibition of the fRMsr due to its ability to bind to the active site.  相似文献   

16.
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (kcat/Km) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in kcat, but not due to variations in Km, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pKa of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pKa. Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme.  相似文献   

17.
Creatininase is a binuclear zinc enzyme and catalyzes the reversible conversion of creatinine to creatine. It exhibits an open-closed conformational change upon substrate binding, and the differences in the conformations of Tyr121, Trp154, and the loop region containing Trp174 were evident in the enzyme-creatine complex when compared to those in the ligand-free enzyme. We have determined the crystal structure of the enzyme complexed with a 1-methylguanidine. All subunits in the complex existed as the closed form, and the binding mode of creatinine was estimated. Site-directed mutagenesis revealed that the hydrophobic residues that show conformational change upon substrate binding are important for the enzyme activity.We propose a catalytic mechanism of creatininase in which two water molecules have significant roles. The first molecule is a hydroxide ion (Wat1) that is bound as a bridge between the two metal ions and attacks the carbonyl carbon of the substrate. The second molecule is a water molecule (Wat2) that is bound to the carboxyl group of Glu122 and functions as a proton donor in catalysis. The activity of the E122Q mutant was very low and it was only partially restored by the addition of ZnCl2 or MnCl2. In the E122Q mutant, kcat is drastically decreased, indicating that Glu122 is important for catalysis. X-ray crystallographic study and the atomic absorption spectrometry analysis of the E122Q mutant-substrate complex revealed that the drastic decrease of the activity of the E122Q was caused by not only the loss of one Zn ion at the Metal1 site but also a critical function of Glu122, which most likely exists for a proton transfer step through Wat2.  相似文献   

18.
Bacterial di-heme cytochrome c peroxidases (CcpAs) protect the cell from reactive oxygen species by reducing hydrogen peroxide to water. The enzymes are c-type cytochromes, with both heme groups covalently attached to the protein chain via a characteristic binding motif. The genome of the dissimilatory metal-reducing bacterium Geobacter sulfurreducens revealed the presence of a ccpA gene and we isolated the gene product after recombinant expression in Escherichia coli. CcpA from G. sulfurreducens exhibited in vitro peroxidase activity with ABTS2− [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] as an electron donor, and the three-dimensional structure of the dimeric enzyme has been determined to high resolution. For activation, CcpA commonly requires reduction, with the exception of the Nitrosomonas europaea enzyme that retains its activity in the oxidized state. A G94K/K97Q/R100I triple point mutant was created to mimic the critical loop region of N. europaea CcpA, but its crystal structure revealed that the inactive, bis-histidinyl-coordinated form of the active-site heme group was retained. Subsequent mutational studies thus addressed an adjacent loop region, where a change in secondary structure accompanies the reductive activation of the enzyme. While an A124K/K128A double mutant did not show significant changes, the CcpA variants S134P/V135K and S134P led to a distortion of the loop region, accompanied by an opening of the active-site loop, leaving the enzyme in a constitutively active state.  相似文献   

19.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adenylosuccinate lyase (ASL) of Bacillus subtilis contains three conserved histidines, His(68), His(89), and His(141), identified by affinity labeling and site-directed mutagenesis as critical to the intersubunit catalytic site. The pH-V(max) profile for wild-type ASL is bell-shaped (pK (1) = 6.74 and pK (2) = 8.28). Only the alkaline side changes with temperature, characteristic of histidine pKs. To identify determinants of pK (2) in the enzyme-substrate complex, we replaced residues at two positions close to His(68) (but not to His(89) or His(141)) in the structure. Compared with the specific activity of 1.75 mumol adenylosuccinate reacting/min/mg of wild-type enzyme at pH 7.0, mutant enzymes D69E, D69N, R310Q, and R310K exhibit specific activities of 0.40, 0.04, 0.00083, and 0.10, respectively. While D69E has a K (m) for adenylosuccinate similar to that of wild-type ASL, D69N and R310K exhibit modest increases in K (m), and R310Q has an 11-fold increase in K (m). The mutant enzymes show no significant change in molecular weight or secondary structure. The major change is in the pH-V(max) profile: pK (2) is 8.48 for the D69E mutant and is decreased to 7.83 in D69N, suggesting a proximal negative charge is needed to maintain the high pK of 8.28 observed for wild-type enzyme and attributed to His(68). Similarly, R310Q exhibits a decrease in its pK (2) (7.33), whereas R310K shows little change in pK (2) (8.24). These results suggest that Asp(69) interacts with His(68), that Arg(310) interacts with and orients the beta-carboxylate of Asp(69), and that His(68) must be protonated for ASL to be active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号