首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

2.
Three different DNA-based techniques, Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) markers, were used for fingerprinting Dactylis glomerata genotypes and for detecting genetic variation between the three different subspecies. In this study, RAPD assays produced 97 bands, of which 40 were polymorphic (41.2%). The ISSR primers amplified 91 bands, and 54 showed polymorphism (59.3%). Finally, the AFLP showed 100 bands, of which 92 were polymorphic (92%). The fragments were scored as present (1) or absent (0), and those readings were entered in a computer file as a binary matrix (one for each marker). Three cluster analyses were performed to express–in the form of dendrograms–the relationships among the genotypes and the genetic variability detected. All DNA-based techniques used were able to amplify all of the genotypes. There were highly significant correlation coefficients between cophenetic matrices based on the genetic distance for the RAPD, ISSR, AFLP, and combined RAPD-ISSR-AFLP data (0.68, 0.78, 0.70, and 0.70, respectively). Two hypotheses were formulated to explain these results; both of them are in agreement with the results obtained using these three types of molecular markers. We conclude that when we study genotypes close related, the analysis of variability could require more than one DNA-based technique; in fact, the genetic variation present in different sources could interfere or combine with the more or less polymorphic ability, as our results showed for RAPD, ISSR and AFLP markers. Our results indicate that AFLP seemed to be the best-suited molecular assay for fingerprinting and assessing genetic relationship among genotypes of Dactylis glomerata.  相似文献   

3.
RAPD markers for constructing intraspecific tomato genetic maps   总被引:8,自引:0,他引:8  
The existing molecular genetic maps of the tomato, Lycopersicon spp, are constructed based on isozyme and RFLP polymorphisms between tomato species. These maps are useful for certain applications but have few markers that exhibit sufficient polymorphisms for intraspecific analysis and manipulations within the cultivated tomato. The purpose of this study was to investigate the relative potential of RAPD technology, as compared to isozymes and RFLPs, to generate polymorphic DNA markers within cultivated tomatoes. Sixteen isozymes and 25 RFLP clones that were known to detect polymorphism between L. esculentum and L. pennellii, and 313 random oligonucleotide primers were examined. None of the isozymes and only four of the RFLP clones (i.e., 16%) revealed polymorphism between the cultivated varieties whereas up to 63% of the RAPD primers detected one or more polymorphic DNA fragments between these varieties. All RAPD primers detected polymorphism between L. esculentum and L. pennellii genotypes. These results clearly indicate that RAPD technology can generate sufficient genetic markers exploiting sequence differences within cultivated tomatoes to facilitate construction of intraspecific genetic maps.Abbreviations RFLP restriction fragments length polymorphism - RAPD random amplified polymorphic DNA - PCR polymerase chain reaction - QTLs quantitative trait loci  相似文献   

4.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

5.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

6.
AFLP markers were evaluated for determining the phylogenetic relationships Lactuca spp. Genetic distances based on AFLP data were estimated for 44 morphologically diverse lines of cultivated L. sativa and 13 accessions of the wild species L. serriola, L. saligna, L. virosa, L. perennis, and L. indica. The same genotypes were analyzed as in a previous study that had utilized RFLP markers. The phenetic tree based on AFLP data was consistent with known taxonomic relationships and similar to a tree developed with RFLP data. The genetic distance matrices derived from AFLP and RFLP data were compared using least squares regression analysis and, for the cultivar data, by principal component analysis. There was also a positive linear relationship between distance estimates based on AFLP data and kinship coefficients calculated from pedigree data. AFLPs represent reliable PCR-based markers for studies of genetic relationships at a variety of taxonomic levels.  相似文献   

7.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

8.
Genetic similarity among 45 Brassica Oleracea genotypes was compared using two molecular markers, random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs). The genotypes included 37 broccolis (var. italica), five cauliflowers (var. botrytis) and three cabbages (var. capitata) which represented a wide range of commercially-available germplasm, and included open-pollinated cultivars, commercial hybrids, and inbred parents of hybrid cultivars. Fifty-six polymorphic RFLP bands and 181 polymorphic RAPD bands were generated using 15 random cDNA probes and 62 10-mer primers, respectively. The objectives were to compare RFLP and RAPD markers with regard to their (1) sampling variance, (2) rank correlations of genetic distance among sub-samples, and (3) inheritance. A bootstrap procedure was used to generate 200 random samples of size n (n=2,3,5,... 55) independently from the RAPD and RFLP data sets. The coefficient of variance (CV) was estimated for each sample. Pooled regressions of the coefficient of variance on bootstrap sample size indicated that the rate of decrease in CV with increasing sample size was the same for RFLPs and RAPDs. The rank correlation between the Nei-Li genetic similarity values for all pairs of genotypes (990) based on RFLP and RAPD data was 0.745. Differences were observed between the RFLP and RAPD dendrograms of the 45 genotypes. Overlap in the distributions of rank correlations between independent sub-samples from the RAPD data set, compared to correlations between RFLP and RAPD sub-samples, suggest that observed differences in estimation of genetic similarity between RAPDs and RFLPs is largely due to sampling error rather than due to DNA-based differences in how RAPDs and RFLPs reveal polymorphisms. A crossing algorithm was used to generate hypothetical banding patterns of hybrids based on the genotypes of the parents. The results of this study indicate that RAPDs provide a level of resolution equivalent to RFLPs for detemination of the genetic relationships among genotypes.  相似文献   

9.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   

10.
Genetic diversity of 56 radish accessions, representing nearly all the typical types and origins of cultivated radish germplasms conserved in the National Mid-term Genebank for Vegetables of China, was assessed with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. A total of 72 and 128 polymorphic bands were generated by the 12 selected RAPD primers and eight AFLP primer combinations respectively. A moderate correlation with the value of r = 0.66 was observed between AFLP and RAPD markers. The total 200 polymorphic bands were integrated to assess the genetic diversity of 56 radish accessions. The Jaccard similarity coefficients between the accessions varied from 0.30 to 0.83 with the mean of 0.54. Cluster analysis classified the germplasms into three groups of var. hortensis Becker, var. sativus, and var. niger Kerner. The three-dimensions scatter plot of principle coordinate analysis (PCA) further divided var. hortensis Becker germplasms into two separate groups. The results indicated that the genetic diversity harbored among var. hortensis Becker germplasms was very abundant, which could be further exploited for radish genetic improvement.  相似文献   

11.
The effectiveness of RFLP, DAMD-PCR, ISSR and RAPD markers in assessing polymorphism and relationships between 24 commercial lines of Phaseolus vulgaris L.was evaluated. We have used a Phaseolus-specific minisatellite sequence as a probe, which enabled 23 of the bean lines tested to be fingerprinted. Based on the sequence information obtained, primers corresponding to the bean-specific minisatellite core sequence were used in subsequent PCR amplifications. Our observations indicated that while the DAMD-PCR was sensitive in detecting genetic variation between bean species and between accessions of P. vulgaris, when used alone it may be limited in its ability to detect genetic variation among cultivated bean lines due to the low number of loci amplified. Only one out of the five ISSR primers tested was efficient in generating multiple band profiles, which was insufficient to distinguish all the different bean lines. Reproducible RAPD profiles were obtained, and these allowed us to differentiate all the genotypes tested with seven primers. We ultimately used only results from RFLP and RAPD markers to explore the genetic diversity among commercial bean lines. Both analyses led to the same clustering of the bean lines according to their geographical origins (United States or Europe). With respect to the European lines, the results obtained from RAPD data also enable the lines to be clustered according to their creators. Received: 15 January 2000 / Accepted: 21 March 2000  相似文献   

12.
 Random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers were used to evaluate genetic relationships within the Theobroma cacao species and to assess the organization of its genetic diversity. Genetic variability was estimated with 18 primers and 43 RFLP probes on 155 cocoa trees belonging to different morphological groups and coming from various geographic origins. The majority of the RFLP probes issued from low-copy DNA sequences. On the basis of on the genetic distance matrices, the two molecular methods gave related estimates of the genetic relationship between genotypes. Although an influence of cocoa morphological groups and geographical origins of trees was observed, a lack of gene differentiation characterized the T. cacao accessions studied. The continuous RFLP variability observed within the species may reflect the hybridization and introgressions between trees of different origins. Nevertheless, the Nacional type was detected to be genetically specific and different from well-known types such as Forastero, Criollo and Trinitario. Some of those genotypes were characterized by a low heterozygosity rate and may constitute the original Nacional pool. These results also provide information for the constitution of a cocoa tree core collection. Received: 10 June 1996/Accepted: 11 October 1996  相似文献   

13.
Semagn K 《Hereditas》2002,137(2):149-156
The genetic relationships among ten types of endod (Phytolacca dodecandra) cultivated by the Institute of Pathobiology of the Addis Ababa University to combat the disease bilharzia in Ethiopia were studied using morphology and molecular markers. A total of 18 morphological characters, 194 amplified fragment length polymorphism (AFLP) and 42 random amplified polymorphic DNA (RAPD) markers were used to determine genetic proximity between types. Genetic distance and cluster analysis of the AFLP data revealed the lack of genetic difference between E47 and E48 but relatively wider genetic difference among the other endod types. Cluster and principal component analyses performed on the AFLP and RAPD markers demonstrated the presence of distinct separation of E56 but not that of E44 from the others. The AFLP and RAPD data, thcrefore, did not support the hypothesis that the superiority of E44 in agronomic traits and molluscicidal potency is linked to its distinct genetic difference from the other endod types. Matrices correspondence tests demonstrated the presence of greater correspondence between AFLP and RAPD data (r = 0.842) but not between the morphology and that of AFLP and RAPD. This indicates the correspondence more between the two DNA markers systems than either of them with morphological traits. The cophenetic correlation coefficients also revealed poor fit for morphology (r = 0.716), good fit for RAPD (r = 0.872) and very good fit for AFLP (r = 0.975), reflecting the hyper-variability and higher resolving power of AFLP.  相似文献   

14.
RFLP and RAPD markers were evaluated and compared for their ability to determine genetic relationships in a set of three B. napus breeding lines. Using a total of 50 RFLP and 92 RAPD markers, the relatedness between the lines was determined. In total, the RFLP and the RAPD analysis revealed more than 500 and 400 bands, respectively. The relative frequencies of loci with allele differences were estimated from the band data. The RFLP and RAPD marker sets detected very similar relationships among the three lines, consistent with known pedigree data. Bootstrap analyses showed that the use of approximately 30 probes or primers would have been sufficient to achieve these relationships. This indicates that RAPD markers have the same resolving power as RFLP markers when used on exactly the same set of B. napus genotypes. Since RAPD markers are easier and quicker to use, these markers may be preferred in applications where the relationships between closely-related breeding lines are of interest. The use of RAPD markers in fingerprinting applications may, however, not be warranted, and this is discussed in relation to the reliability of RAPD markers.  相似文献   

15.
We have constructed a tomato genetic linkage map based on an intraspecific cross between two inbred lines of Lycopersicon esculentum and L. esculentum var. cerasiforme. The segregating population was composed of 153 recombinant inbred lines. This map is comprised of one morphological, 132 RFLP (restriction fragment length polymorphism, including 16 known-function genes), 33 RAPD (random amplified polymorphic DNA), and 211 AFLP (amplified fragment length polymorphism) loci. We compared the 3 types of markers for their polymorphism, segregation, and distribution over the genome. RFLP, RAPD, and AFLP methods revealed 8.7%, 15.8%, and 14.5% informative bands, respectively. This corresponded to polymorphism in 30% of RFLP probes, 32% of RAPD primers, and 100% of AFLP primer combinations. Less deviation from the 1:1 expected ratio was obtained with RFLP than with AFLP loci (8% and 18%, respectively). RAPD and AFLP markers were not randomly distributed over the genome. Most of them (60% and 80%, respectively) were grouped in clusters located around putative centromeric regions. This intraspecific map spans 965 cM with an average distance of 8.3 cM between markers (of the framework map). It was compared to other published interspecific maps of tomato. Despite the intraspecific origin of this map, it did not show any increase in length when compared to the high-density interspecific map of tomato.  相似文献   

16.
Tetraploid Paspalum notatum (bahiagrass) is a valuable forage grass with aposporous apomictic reproduction. In a previous study, we showed that apospory in bahiagrass is under the control of a single dominant gene with a distorted segregation ratio. The objective of this work was to identify molecular markers linked to apospory in tetraploid P. notatum and establish a preliminary syntenic relationship with the genomic region associated with apospory in P. simplex. A F1 population of 290 individuals, segregating for apospory, was generated after crossing a completely sexual plant (Q4188) with a natural aposporous apomictic plant (Q4117). The whole progeny was classified as sexual or aposporous by embryo sacs analysis. A bulked segregant analysis was carried out to identify molecular markers co-segregating with apospory. Four hundred RAPD primers, 30 AFLP primers combinations and 85 RFLP clones were screened using DNA from both parental genotypes and aposporous and sexual bulks. Linkage analysis was performed with cytological and genetic information from the complete progeny. Cytoembryological analysis showed 219 sexual and 71 aposporous F1 individuals. Seven different molecular markers (2 RAPD, 4 AFLP and 1 RFLP) were found to be completely linked to apospory. The RFLP probe C1069, mapping to the telomeric region of the long arm of rice chromosome 12, was one of the molecular markers completely linked to apospory in P. notatum. This marker had been previously associated with apospory in P. simplex. A preliminary map of the chromosome region carrying the apospory locus was constructed.  相似文献   

17.
AFLP and RAPD marker techniques have been used to evaluate and study the diversity and phylogeny of 54 lentil accessions representing six populations of cultivated lentil and its wild relatives. Four AFLP primer combinations revealed 23, 25, 52 and 48 AFLPs respectively, which were used to partition variation within and among Lens taxa. The results of AFLP analysis is compared to previous RAPD analysis of the same material. The two methods provide similar conclusions as far as the phylogeny of Lens is concerned. The AFLP technique detected a much higher level of polymorphyism than the RAPD analysis. The use of 148 AFLPs arising from four primer combinations was able to discriminate between genotypes which could not be distinguished using 88 RAPDs. The level of variation detected within the cultivated lentil with AFLP analysis indicates that it may be a more efficient marker technology than RAPD analysis for the construction of genetic linkage maps between carefully chosen cultivated lentil accessions.  相似文献   

18.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

19.
A phenotypically polymorphic barley (Hordeum vulgare L.) mapping population was developed using morphological marker stocks as parents. Ninety-four doubled-haploid lines were derived for genetic mapping from an F1 using the Hordeum bulbosum system. A linkage map was constructed using 12 morphological markers, 87 restriction fragment length polymorphism (RFLP), five random amplified polymorphic DNA (RAPD), one sequence-tagged site (STS), one intron fragment length polymorphism (IFLP), 33 simple sequence repeat (SSR), and 586 amplified fragment length polymorphism (AFLP) markers. The genetic map spanned 1,387 cM with an average density of one marker every 1.9 cM. AFLP markers tended to cluster on centromeric regions and were more abundant on chromosome 1 (7H). RAPD markers showed a high level of segregation distortion, 54% compared with the 26% observed for AFLP markers, 27% for SSR markers, and 18% for RFLP markers. Three major regions of segregation distortion, based on RFLP and morphological markers, were located on chromosomes 2 (2H), 3 (3H), and 7 (5H). Segregation distortion may indicate that preferential gametic selection occurred during the development of the doubled-haploid lines. This may be due to the extreme phenotypes determined by alleles at morphological trait loci of the dominant and recessive parental stocks. Several molecular markers were found to be closely linked to morphological loci. The linkage map reported herein will be useful in integrating data on quantitative traits with morphological variants and should aid in map-based cloning of genes controlling morphological traits. Received: 23 August 2000 / Accepted: 15 December 2000  相似文献   

20.
DNA-based molecular-marker techniques have been proven powerful in genetic diversity estimations. Among them, RFLP was the first and is still the most commonly used in the estimation of genetic diversity of eukaryotic species. The recently developed PCR-based multiple-loci marker techniques, which include RAPD, AFLP, Microsatellite-AFLP and inter-SSR PCR, are playing increasingly important roles in this type of research. Despite the wide application of these techniques, no direct comparison of these methods in the estimation of genetic diversity has been carried out. Here we report a direct comparison of DNA-based RFLP with various PCR-based techniques regarding their informativeness and applicability for genetic diversity analysis. Among ten pea genotypes studied, all the PCR-based methods were much more informative than cDNA-RFLP. Genetic diversity trees were derived from each marker technique, and compared using Mantel's test. By this criterion, all trees derived from the various molecular marker techniques, except for the tree derived from inter-SSR PCR, were significantly correlated, suggesting that these PCR-based techniques could replace RFLP in the estimation of genetic diversity. On the basis of this result, AFLP analysis was applied to assess the genetic diversity of a sample of accessions representing the various species and subspecies within the genus Pisum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号