首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
为明确银川番茄(Lycopersicon esculentum)是否遭受了番茄斑萎病毒(TSWV)的危害, 采用国家标准TSWV RT- PCR检测技术对银川番茄上采集的14份疑似感染TSWV病叶样本进行分子鉴定, 对克隆得到的核衣壳蛋白基因N (Nucleocapsid)序列进行多序列比对和系统进化树分析, 随后对PCR阳性样本进行蛋白检测。结果表明, 14份病叶样本中有8份扩增出长度为394 bp的TSWV N基因序列, 且8条序列完全一致; 获得的银川番茄TSWV分离物与云南番茄、中国莴苣(Lactuca sativa)、中国鸢尾(Iris tectorum)和重庆辣椒(Capsicum annuum) TSWV分离物相对近缘, 与山东、黑龙江和北京等地及国外TSWV分离物相对远缘; 利用TSWV的抗体通过Western blot对8个PCR阳性样本进一步检测, 结果也证实8个阳性样本中存在TSWV感染。该研究首次通过分子鉴定及蛋白检测证明银川番茄上存在TSWV感染, 需要加快抗TSWV番茄品种的选育工作。  相似文献   

2.
番茄的抗病基因Tm -2 2 与番茄花叶病毒 (ToMV)的移动蛋白MP基因是一对互作的基因 ,Tm- 2 2 基因和ToMV MP基因同时在烟草中表达 ,并分别获得单一基因整合的纯合转化体植株。病毒接种试验表明 ,Tm -2 2 基因转化体与Tm- 2 2 番茄对Tobamavirus病毒的特异抗性结果一致 ;Tm -2 2 转基因植株和ToMV MP转基因植株杂交试验及其农杆菌注射试验均证明 :(1)Tm -2 2 基因与ToMV- MP在转基因烟草上保持“基因对基因”的互作关系 ;(2 )在外源乙烯的参与下 ,ToMV的移动蛋白与Tm -2 2 基因编码蛋白的互作能够诱导转化体程序性细胞死亡。这一结果为今后研究Tm -2 2 与MP互作的分子机制奠定了基础。  相似文献   

3.
根据大叶补血草(Limonium gmelinii(Wildl.)Kuntze)SOS1基因序列(登录号:EU780458)设计特异性引物,通过RT-PCR方法从叶片中克隆得到质膜Na+/H+逆向转运蛋白基因LgSOS1,将该基因重组于质粒pCAMBIA1390的CaMV35S启动子下游,构建含LgSOS1基因植物表达载体pCAMBIA1390-LgSOS1。通过根癌农杆菌介导法转化番茄(Lycopersicon esculen-tum),在1.2 mg/L6-BA、0.2 mg/L IAA、20 mg/L潮霉素和200 mg/L羧苄青霉素的MS培养基上进行选择培养,从抗性愈伤组织中获得再生植株。经PCR和RT-PCR检测,初步证实LgSOS1基因已整合至番茄的基因组中。  相似文献   

4.
参照豆科合萌属 (Aeschynomene)作物炭疽病菌的tub1和tub2基因序列设计了 2对引物 ,分别从芒果 (Man gifera)炭疽病菌对多菌灵 (MBC)田间抗药性 (MBCR)和敏感 (MBCS)的菌株中扩增 β_微管蛋白基因。结果只有以tub2为参照设计的引物扩增到了特异片段。进一步对全基因进行了克隆和测序。该基因序列全长 1344bp ,编码4 4 7aa ,其核苷酸和氨基酸序列与豆科合萌属炭疽病菌的tub2基因高度同源。对芒果炭疽病菌抗、感菌株 β_微管蛋白氨基酸序列进行比较分析 ,发现第 181、2 37和 36 3位氨基酸发生了突变 ,而其它位置 (如第 198位或 2 0 0位 )均不变  相似文献   

5.
为获得番茄抗晚疫病广谱性基因信息,采用同源电子克隆法,基于番茄蛋白序列数据库,以马铃薯晚疫病广谱抗性蛋白Rpi-blb1为种子序列,获得番茄疾病抗性蛋白RGA4,并进行基因电子定位和基因结构、模体、二级结构、基因进化及基因电子表达等分析,以证明两者的进化关系。结果表明:番茄RGA4蛋白(XP_004245923.1)序列具有NB-ARC和LRR8两个保守结构域,定位于第8条染色体SL2.40区间,相应基因位于8号染色体序列的57228847-57232935 bp区间,长度为4 089 bp,由2个外显子和1个内含子组成,编码988个氨基酸序列,该蛋白为不稳定分泌球形蛋白;番茄RGA4蛋白和马铃薯Rpi-blb1蛋白在二级结构分布、基因序列组成、基因定位等方面相似性较高,可确定两者为垂直同源关系,但在基因进化和模体组成方面存在差异,可能导致两者功能上的不同。研究结果可为番茄晚疫病广谱抗性基因克隆及其利用提供理论依据。  相似文献   

6.
根据从柽柳cDNA文库克隆获得的脂质转运蛋白(LTP)的部分序列,用RACE技术克隆出其全长cDNA序列.基因的5'非翻译区96bp,3'非翻译区222bp,开放阅读框285bp,编码94个氨基酸,预计蛋白的分子量为9.9 kD,等电点为8.02.此基因有8个位置保守的Cys残基及26个氨基酸的信号肽,为典型的植物脂质转运蛋白基因.其基因序列数据库(GenBank)登录号为AY574218(基因)和AAS79106(蛋白).  相似文献   

7.
目的:对DEV贵州分离株NP基因进行克隆与序列分析,构建NP基因的原核表达载体,分析NP基因原核表达产物的免疫反应性。方法:根据GeneBank登载的DENNP基因序列设计引物,对DEV贵州分离株进行PCR扩增、克隆和测序,采用生物信息学软件程序分析NP蛋白的氨基酸序列;将该基因插入到原核表达载体pET32a上进行原核表达和Western Blotting分析。结果:DEV贵州分离株NP基因全长759bp,核苷酸序列与参考株一致;NP基因编码蛋白相对分子量为27.1kDa,理论pI为5.89,肽链上第10.15、88.92和182.186区段及其附近区域可能是B细胞表位优势区;构建得到的重组质粒pET32-NP可表达出一条大小约为48kDa的蛋白,且能与兔抗DEN-IgG发生特异性结合。结论:NP基因在DEN基因组中高度保守,其原核表达产物具有良好的免疫反应性。  相似文献   

8.
SARS冠状病毒的N蛋白具有很强的免疫原性 ,是机体产生特异性体液反应主要针对的靶分子之一。收集并提取了我院收治的北京地区 1 2位确诊SARS患者的病毒RNA样本 ,用反转录巢式聚合酶链式反应分 3个片段扩增出N基因全序列 ,用pGEM T载体克隆后进行DNA序列分析。结果发现 ,在 1 2条病毒N基因序列中 ,与北京地区最早报告的BJ0 1株SARS冠状病毒N基因序列相比 ,有 3个核苷酸替换 ,分布于 2个序列位点 ,分别为 2 841 7G→C(aa1 0 6S→T)和 2 8433C→T(aa1 1 1F→F同义突变 ) ,均为新发现的变异位点。结果表明 ,北京地区传播的SARS冠状病毒N基因存在变异序列 ,但发生频率较低 ,提示N基因的结构稳定对病毒的生存较为重要。  相似文献   

9.
10.
乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)全长154个氨基酸,与肝癌发生密切相关.为确定HBx的优势氨基酸序列和热点突变位点,在GenBank中下载所有HBx的氨基酸序列13950条,剔除插入突变、缺失突变和起始密码子非甲硫氨酸的序列,最后保留7126条.通过分析这7126条序列,计算出HBx每个位点的氨基酸分布情况,出现频率最高的氨基酸为该位点的优势氨基酸,其他氨基酸为突变氨基酸.154个位点的优势氨基酸组成HBx优势氨基酸序列.突变率>10.0%的热点突变位点有32个.其中第36、42、44、87、88和127位氨基酸有4种(突变率>1.0%)以上突变形式,具有较高的多态性.与肝癌密切相关的K130M/V131I双突变率为34.7%.通过7126条HBx序列与优势序列的同源性比较,随机选出其中50条序列(2条与优势序列同源性<75%,48条同源性为76%~99%),与23条参考序列及优势序列共同构建系统发生树.结果显示,HBx优势氨基酸序列属于基因型C,这与基因型C为全球主要流行型一致.本研究首次系统性分析了GenBank中HBx的优势序列,确定了32个HBx热点突变位点和6个多态性较高的位点,为基于HBx突变的基础和应用研究奠定了基础.  相似文献   

11.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

12.
13.
14.
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22, damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm-22-mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22-mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.  相似文献   

15.
The movement protein (MP) of the tobacco mosaic virus (TMV) provides the intercellular transport of the viral RNA through plasmodesmata. MP fulfils its function while interacting with host cell factors on the whole way of its intracellular movement from the subcellular site of its synthesis to the plasmodesmata of cellular walls. The MP conformation during its intracellular movement and fulfilling the transport function still remains unknown. In this study, we describe the preparation of murine monoclonal antibodies (MAs) to TMV MP and mapping of the MP epitopes. Stable hybridoma lines that produce MAs to the partially denatured recombinant MP (MPr) were obtained. MAs were tested by the immunoblotting and ELISA with the use of deletion variations of MPr. The epitopes of TMV MPr that recognize specific MAs were determined.  相似文献   

16.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

17.
18.
The movement protein (MP) and coat protein (CP) of tobamoviruses play critical roles in viral cell-to-cell and long-distance movement, respectively. Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus. The functions of CGMMV MP and CP during viral infection remain largely unclear. Here, we show that CGMMV MP can interact with CP in vivo, and the amino acids at positions 79–128 in MP are vital for the MP–CP interaction. To confirm this finding, we mutated five conserved residues within the residue 79–128 region and six other conserved residues flanking this region, followed by in vivo interaction assays. The results showed that the conserved threonine residue at the position 107 in MP (MPT107) is important for the MP–CP interaction. Substitution of T107 with alanine (MPT107A) delayed CGMMV systemic infection in Nicotiana benthamiana plants, but increased CGMMV local accumulation. Substitutions of another 10 conserved residues, not responsible for the MP–CP interaction, with alanine inhibited or abolished CGMMV systemic infection, suggesting that these 10 conserved residues are possibly required for the MP movement function through a CP-independent manner. Moreover, two movement function-associated point mutants (MPF17A and MPD97A) failed to cause systemic infection in plants without impacting on the MP–CP interaction. Furthermore, we have found that co-expression of CGMMV MP and CP increased CP accumulation independent of the interaction. MP and CP interaction inhibits the salicylic acid-associated defence response at an early infection stage. Taken together, we propose that the suppression of host antiviral defence through the MP–CP interaction facilitates virus systemic infection.  相似文献   

19.
The avirulence determinant triggering the resistance conferred by the tomato gene Sw‐5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance‐breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non‐resistance‐breaking (NRB)] in Nicotiana benthamiana expressing Sw‐5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell‐to‐cell and systemic transport of the chimeric AMV RNAs into N. tabacum with or without Sw‐5, except for the constructs with NBR when Sw‐5 was expressed, although RB2 showed reduced cell‐to‐cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co‐inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw‐5. These results indicate that NSm is the avirulence determinant for Sw‐5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system.  相似文献   

20.
Tomato spotted wilt virus (TSWV) causes economically important losses in many crops, worldwide. In pepper (Capsicum annuum), the best method for disease control has been breeding resistant cultivars by introgression of gene Tsw from Capsicum chinense. However, this resistance has two drawbacks: (a) it is not efficient if plants are infected at early growth stages and under prolonged high temperatures, and (b) it is rapidly overcome by TSWV evolution. In this work, we selected and evaluated a new accession from Capsicum baccatum, named PIM26‐1, using a novel approach consisting in measuring how three parameters related to virus infection changed over time, in comparison to a susceptible pepper variety (Negral) and a resistant (with Tsw) accession (PI‐159236): (a) The level of resistance to virus accumulation was estimated as an opposite to absolute fitness, W=er, being r the viral multiplication rate calculated by quantitative RT‐PCR; (b); the level of resistance to virus infection was estimated as the Kaplan–Meier survival time for no infection using DAS‐ELISA to identify TSWV‐infected plants; (c) the level of tolerance was estimated as the Kaplan–Meier survival time for no appearance of severe symptoms. Our results showed that the levels of both resistance parameters against TSWV wild type (WT) and Tsw‐resistance breaking (TBR) isolates were higher in PIM26‐1 than in the susceptible pepper variety Negral and similar to the resistant variety PI‐159236 against the TBR isolate. However, PIM26‐1 showed a very high tolerance (none of the plants developed severe symptoms) to the WT and TBR isolates in contrast to Negral for WT and TBR or PI‐159236 for TBR (most TSWV‐inoculated plants developed severe symptoms). All this indicate that the new accession PIM26‐1 is a good candidate for breeding programmes to avoid damages caused by TSWV TBR isolates in pepper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号