首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun G  Budde RJ 《Biochemistry》1999,38(17):5659-5665
In addition to a magnesium ion needed to form the ATP-Mg complex, we have previously determined that at least one more free Mg2+ ion is essential for the activation of the protein tyrosine kinase, Csk [Sun, G., and Budde, R. J. A. (1997) Biochemistry 36, 2139-2146]. In this paper, we report that several divalent metal cations, such as Mn2+, Co2+, Ni2+, and Zn2+ bind to the second Mg2+-binding site of Csk with up to 13200-fold higher affinity than Mg2+. This finding enabled us to substitute the free Mg2+ at this site with Mn2+, Co2+, Ni2+, or Zn2+ while keeping ATP saturated with Mg2+ to study the role of the free metal cation in Csk catalysis. Substitution by these divalent metal cations resulted in varied levels of Csk activity, with Mn2+ even more effective than Mg2+. Co2+ and Ni2+ supports reduced levels of Csk activity compared to Mg2+. Zn2+ has the highest affinity for the second Mg2+-binding site of Csk at 0.65 microM, but supports no kinase activity, acting as a dead-end inhibitor. The inhibition by Zn2+ is reversible and competitive against free Mg2+, noncompetitive against ATP-Mg, and mixed against the phosphate accepting substrate, polyE4Y, significantly increasing the affinity for this substrate. Substitution of the free Mg2+ with Mn2+, Co2+, or Ni2+ also results in lower Km values for the peptide substrate. These results suggest that the divalent metal activator is an important element in determining the affinity between Csk and the phosphate-accepting substrate.  相似文献   

2.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

3.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

4.
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.  相似文献   

5.
The effect of some inhibitors and bivalent metal cations (Mn2+, Ca2+, Fe2+, Zn2+, Mg2+, Co2+ and Cu2+) on the proteolytic activity of two Bacillus mesentericus strains (strain 8 and strain 64 M-variant) was comparatively studied. The both enzymes were shown to be serine proteinases, but the proteinase of strain 64 was also a metal-dependent enzyme. Metal ions exerted no essential effect on the proteinase of strain 8. Ca2+ and Mg2+ ions stimulated the proteinase activity of strain 64 whereas Fe2+ and Zn2+ ions inhibited it in the case of three substrates. Therefore, the two proteinases are different.  相似文献   

6.
Various metal ions were capable of aggregating and precipitating conglutin gamma, an oligomeric glycoprotein purified from Lupinus albus seeds, at neutral pH values. The most effective metal ions, at 60-fold molar excess to the protein, were Zn2+, Hg2+ and Cu2+; a lower influence on the physical status of conglutin gamma was observed with Cr3+, Fe3+, Co2+, Ni2+, Cd2+, Sn2+, and Pb2+, while Mg2+, Ca2+ and Mn2+ had no effect at all. The insolubilisation of the protein with Zn2+, which is fully reversible, strictly depended on both metal concentration and pH. with middle points of the sharp transitions at three-fold molar excess and pH 6.5, respectively. Conglutin gamma is also fully retained on a metal affinity chromatography column at which Zn2+ and Ni2+ were complexed. A drop of pH below 6.0 and the use of chelating agents, such as EDTA and imidazole, fully desorbed the protein. A slightly lower binding to immobilised Cu2+ and Co2+ and no binding with Mg2+, Cd2+ and Mn2+ were observed. The role of the numerous histidine residues of conglutin gamma in the binding of Zn2+ is discussed.  相似文献   

7.
Wang Y  Ma L  Li Z  Du Z  Liu Z  Qin J  Wang X  Huang Z  Gu L  Chen AS 《FEBS letters》2004,576(1-2):46-50
Inhibition of metal ions and synergetic inhibition of metal ions/genistein on alpha-glucosidase activity has been investigated. We have examined the inhibitory effect of Cu2+, Ni2+, Mg2+, Fe2+, Hg2+, Zn2+, Ca2+, Pb2+, Ag+, V5+, V4+ and Mn2+ ions. The results show that the nature of the inhibition was reversible, slow-binding, non-competitive, and the Ki values of some ions such as Cu2+, Ni2+ and Zn2+ range from 10(-5) to 10(-6) M. Moreover, synergetic inhibitory effect of metal ions and genistein on alpha-glucosidase were studied with kinetics method. It is concluded that the inhibitory effect was much greater when both of them were added to the reactant solution simultaneously than that they were added, respectively, which suggests that the inhibitors seem to bind to the different sites of alpha-glucosidase at the same time. Furthermore, the mechanism of the synergetic inhibition was examined by spectrophotometry.  相似文献   

8.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

9.
金属离子对地衣芽孢杆菌合成多聚γ-谷氨酸的影响   总被引:7,自引:0,他引:7  
杨革  陈坚  曲音波  伦世仪   《生物工程学报》2001,17(6):706-709
多聚γ 谷氨酸 [γ Poly(glutamicacid) ,γ PGA]是由某些杆菌 (Bacillus)合成的一种细胞外水溶性高分子氨基酸聚合物 ,是由L 谷氨酸、D 谷氨酸两种构型的单体通过γ 酰胺键聚合形成的[1 ] 。γ PGA具有极佳的成膜性、成纤维性 ,阻氧性、可塑性、粘结性、保湿性和可生物降解等许多独特的理化和生物学特性[2 ,3] 。因此 ,γ PGA可以被广泛用于医药制造 ,食品加工 ,蔬菜、水果、海产品防冻、保鲜 ,化妆品工业 ,烟草、皮革制造工业和植物种子保护等许多领域 ,是一种有极大开发价值和前景的多功能新型生物制…  相似文献   

10.
Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase   总被引:1,自引:0,他引:1  
P1,P2-Bidentate Co(NH3)4PP was found to be a competitive inhibitor of pyrophosphatase vs. MgPP (Kis = 8.7 mM, pH 7) and, in the presence of Mg2+, an active substrate as well. P1,P2-Bidentate Cr(III) complexes of pyrophosphate, imidodiphosphate, and methylenediphosphonate were also competitive inhibitors vs. MgPP (pH 5.9; Kis = 0.2, 0.2, and 0.4 mM, respectively). In the presence of Mg2+, P1,P2-bidentate Cr(H2O)4PP was found to have a Km 10-fold greater and a turnover number 36-fold smaller than MgPP at pH 5.9. Mg2+, Mn2+, Co2+, Zn2+, Cd2+, Ni2+, and Fe2+ activate the CrPP--pyrophosphatase reaction, while Ca2+ and Ba2+ are not activators but serve as competitive inhibitors vs. Mg2+ (Kis = 0.35 and 2.3 mM). At levels above 0.1 mM, Mn2+, Co2+, and Zn2+ show activator inhibition. Kinetic studies with CrPP and Mg2+ suggest that the kinetic mechanism is rapid equilibrium ordered, with CrPP adding before Mg2+. pH studies of the MgPP/Mg2+ reaction and the CrPP/Mg2+ reaction suggest that the active form of the substrate is (MgPP)2- and that the uncomplexed metal ion cofactor interacts with at least two active-site residues, one possibly via H bonding and the other by direct coordination. The former group (pKa = 5.6) appears on the basis of temperature and solvent perturbation studies to be a carboxylic acid. The MgPP reaction also requires that an active-site residue (pKa = 7.5) be protonated. Temperature and solvent perturbation studies suggest that this residue is an amine. A mechanism accounting for these observations is presented.  相似文献   

11.
A comparison of the product-inhibition patterns during cleavage of D-fructose 1,6-diphosphate by aldolases from yeast, rabbit muscle and Bacillus stearothermophilus shows an ordered reaction sequence for all three enzymes, with dihydroxyacetone phosphate the last-leaving product. Addition of Zn2+, Co2+, Fe2+, Mn2+ or Cd2+ ions to the inactive apo-(Bacillus stearothermophilus aldolase) restores activity to different extents, whereas Ni2+, Mg2+ or Cu2+ ions have no effect. The cleavage activity of this aldolase is not enhanced by added K+ ion. The effects of metal replacement on thermal stability, Km and Vmax. are given and the possible role of the metal is discussed in the light of these results.  相似文献   

12.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

13.
Wheat germ phosphoglycerate mutase: evidence for a metalloenzyme   总被引:1,自引:0,他引:1  
Wheat germ phosphoglycerate mutase, exposed to 3.4 M guanidinium chloride at 22 degrees C and pH 7.8, slowly undergoes time-dependent inactivation which can be fully reversed by adding excess Co2+ or Mn2+ to a 50-fold dilution of the denaturing medium. Titration of the denatured enzyme with either Co2+ or Mn2+ shows that wheat germ mutase preferentially binds Co2+. Assuming 1:1 complexation between metal atom and protein, the apparent dissociation constants (Kd) for E Co2+ and E Mn2+ at 22 degrees C and pH 8.7 are approximately 1.06 and 1.84, respectively. Other metal atoms (e.g., Cr2+, Cu2+, Fe2+, Fe3+, Mg2+, and Ni2+) have no effect in restoring the apoenzyme's catalytic activity. At low concentrations (0.11-0.23 mM) Zn2+ partially restores activity, but promotes protein precipitation at elevated concentrations. Evidence suggests that all bisphosphoglycerate-independent phosphoglycerate mutases require either an intra- or an extramolecular metal atom in order to function. Attempts to characterize wheat germ mutase as a glycoprotein have yielded negative results.  相似文献   

14.
G Colombo  H A Lardy 《Biochemistry》1981,20(10):2758-2767
The presence of a divalent metal ion together with a catalytic amount of inosine 5'-diphosphate (IDP) is essential for the formation of pyruvate from oxalacetate catalyzed by purified rat liver cytosol phosphoenolpyruvate carboxykinase (PEPCK). With decreasing order of effectiveness, this pyruvate-forming activity was supported by micromolar levels of Cd2+, Zn2+, Mn2+, and Co2+. At the same concentrations, Mg2+ or Ca2+ was not effective. Combinations of Cd2+ with either Zn2+, Mn2+ or Co2+ were not additive with respect to the pyruvate-forming activity of PEPCK. Kinetic determination, with Cd2+ as the supporting cation, showed a 1:1 stoichiometry of interaction between each enzyme molecule and the nonconsumable substrate IDP. With 10 muM added Cd2+, the apparent Km for oxalacetate was 41 muM, and the apparent Ka for IDP was 0.25 muM. With Zn2+ or Mn2+, the apparent Ka for IDP was 0.2 or 0.13 muM, respectively. The effect of divalent transition-metal ions on PEPCK-catalyzed formation of phosphoenolpyruvate from oxalacetate was also investigated. Under steady-state conditions, the basal activity with MgITP was effectively enhanced with micromolar levels of Mn2+, Cd2+, or Co2+ included in the assay. The Vm increased 7- and 3.6-fold, and the apparent Km for MgITP changed by about a factor of 2 with the optimal concentrations of Mn2+ and Co2+, respectively. The most striking changes were in the apparent Km values for oxalacetate, which decreased to one-third and one-tenth when either Mn2+ or Co2+ was present in the assay together with Mg2+. The possible physiological importance of this kinetic effect is discussed.  相似文献   

15.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

16.
Rat liver cytosol casein kinases 1 and 2 were stimulated by free Mg2+, but the optimal concentration of cation varied with both the casein kinase and the protein substrate used. Mn2+, but neither Ca2+ nor Zn2+, could efficiently substitute for Mg2+ in forming the bivalent-cation-ATP complex used as substrate, but free Mn2+ was inhibitory. The magnitude of these effects depended on the type of casein kinase and the protein substrate used. These results support the idea that, besides the effects of Mg2+ as a component of the Mg-ATP complex, or through interaction with the protein substrate, free Mg2+ is an allosteric effector of both casein kinases.  相似文献   

17.
The synthesis of the gamma-32P-labeled diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) and the Sp isomer of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) by a modification of the Glynn and Chappell method (Glynn, I. M., and Chappell, J. T., (1964) Biochem. J. 90, 147-149) is described. These analogs were tested as substrates for acetate kinase in the presence of several divalent metal ions. Both isomers of ATP alpha S are substrates in the presence of Mg2+, Mn2+, Co2+, Zn2+, and Cd2+, the Sp isomer being preferred by a factor of between 4.8 (Mg2+) and 52.5 (Cd2+). Only the Rp isomer of ATP beta S is a substrate in the presence of Mg2+, and the Sp isomer becomes a better substrate in the presence of Mn2+, Co2+, and Zn2+; both isomers are equally good substrates in the presence of Cd2+. The change in specificity upon replacing Mg2+ by Cd2+ is greater than 1800 at beta-phosphorus and 10 at alpha phosphorus. These results provide a basis for proposing that the lambda screw sense configuration of the beta, gamma-bidentate MgATP complex is the substrate for acetate kinase. In the reverse reaction, both Sp and Rp isomers of ADP alpha S are substrates in the presence of all metal ions tested, the Sp isomer preferred by a factor between 12.3 (Mg2+) and 45.5 (Cd2+). In the presence of Mg2+, Mn2+, and Co2+, only the Rp isomer of ATP beta S is synthesized from prochiral ADP beta S, while a mixture of Rp and Sp isomers is synthesized in the presence of Zn2+ and Cd2+. These results are analogous to those for the forward reaction and suggest that the Mg.ADP complex which binds as a substrate in the reverse reaction, and is released as a product in the forward reaction, is the beta-monodentate. The classification of acetate kinase as an enzyme having a type I mechanism (Dunaway-Mariano, D. and Cleland, W. W. (1980) Biochemistry 19, 1506-1515) for kinases, is discussed.  相似文献   

18.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

19.
The metal ion requirement for both enzymatic activitiesof the bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosaminekinase (E.C. 5.1.3.14/ 2.7.1.60), the key enzyme of N-acetylneuraminic acidbiosynthesis in ratliver, was investigated. UDP-N-acetylglucosamine 2-epimerase was active inimida-zole/HCl buffer in the complete absence of any metal ion. 200 mM Na + , K + , Rb + and Cs +activated enzymeactivity up to five-fold, whereas lower concentrations of thesemonovalent metal ions showed only a small effect on UDP-N-acetylglucosamine 2-epimeraseactivity. In sodium phosphate buffer the enzyme activitywas increased by 0.5 mM Mg , Sr , Ba and Mn , while in the presence of 200 mM NaCl UDP-N-acetyl-glucosamine2-epimerase activity showed astronger activation by these divalent metal ions. In imidazole/HClbuffer, UDP-N-acetylglucosamine2-epimerase activity was partially inhibited by 0.5 mM Be , Mg , Ba ,Mn , Sn and Fe , and completely inhibited by 0.5 mM Zn and Cd . Divalent metal ions were essen-tialforN-acetylmannosamine kinase activity, the most effective being Mg , followed byMn and Co .The optimal concentration of these metal ions was 3 mM. Less effective were Ni and Cd , whereas Ca ,Ba , Cu , Fe and Zn showed no effect on enzyme activity.  相似文献   

20.
Stoichiometry, kinetics, and optical properties of rabbit muscle pyruvate kinase activated with Co(II), Ni(II), Mg(II), and Mn(II) were studied. The stoichiometry of metal binding to enzyme was found to be 4 metal ions per tetrameric enzyme for Co(II) and Ni(II) by carrying out circular dichroic titrations. Cu(II) and Fe(II) were inactive. Ca(II) and Zn(II) were not activating, and were inhibitory with respect to all of the active cations. The temperature dependence of the optimal velocity is similar for all activating metals. The pH rate profiles suggest that there are two classes of enzyme activation by metal ions. Mg(II) and Mn(II) are quite similar to each other while Co(II) and Ni(II) are different from them but similar to each other. Absorption, natural, and magnetic CD in the visible region were used to probe the environment of the activating divalent cation in Ni(II)- and Co(II)-activated pyruvate kinase and their complexes with substrates and inhibitors...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号