首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterotoxigenic Escherichia coli (ETEC) with fimbriae of the F4 family are one of the major causes of diarrhea and death among neonatal and young piglets. Bacteria use the F4 fimbriae to adhere to specific receptors expressed on the surface of the enterocytes. F4 fimbriae exist in three different antigenic variants, F4ab, F4ac, and F4ad, of which F4ac is the most common. Resistance to ETEC F4ab/F4ac adhesion in pigs has been shown to be inherited as an autosomal recessive trait. In previous studies the ETEC F4ab/F4ac receptor locus (F4bcR) was mapped to the q41 region on pig chromosome 13. A polymorphism within an intron of the mucin 4 (MUC4) gene, which is one of the possible candidate genes located in this region, was shown earlier to cosegregate with the F4bcR alleles. Recently, we discovered a Large White boar from a Swiss experimental herd with a recombination between F4bcR and MUC4. A three?Cgeneration pedigree including 45 offspring was generated with the aim to use this recombination event to refine the localization of the F4bcR locus. All pigs were phenotyped using the microscopic adhesion test and genotyped for a total of 59 markers. The recombination event was mapped to a 220-kb region between a newly detected SNP in the leishmanolysin-like gene (LMLN g.15920) and SNP ALGA0072075. In this study the six SNPs ALGA0072075, ALGA0106330, MUC13-226, MUC13-813, DIA0000584, and MARC0006918 were in complete linkage disequilibrium with F4bcR. Based on this finding and earlier investigations, we suggest that the locus for F4bcR is located between the LMLN locus and microsatellite S0283.  相似文献   

2.
F4 enterotoxigenic Escherichia coli (F4 ETEC) are an important cause of diarrhea in neonatal and newly-weaned pigs. Based on the predicted differential O-glycosylation patterns of the 2 MUC13 variants (MUC13A and MUC13B) in F4ac ETEC susceptible and F4ac ETEC resistant pigs, the MUC13 gene was recently proposed as the causal gene for F4ac ETEC susceptibility. Because the absence of MUC13 on Western blot from brush border membrane vesicles of F4ab/acR+ pigs and the absence of F4ac attachment to immunoprecipitated MUC13 could not support this hypothesis, a new GWAS study was performed using 52 non-adhesive and 68 strong adhesive pigs for F4ab/ac ETEC originating from 5 Belgian farms. A refined candidate region (chr13: 144,810,100–144,993,222) for F4ab/ac ETEC susceptibility was identified with MUC13 adjacent to the distal part of the region. This candidate region lacks annotated genes and contains a sequence gap based on the sequence of the porcine GenomeBuild 10.2. We hypothesize that a porcine orphan gene or trans-acting element present in the identified candidate region has an effect on the glycosylation of F4 binding proteins and therefore determines the F4ab/ac ETEC susceptibility in pigs.  相似文献   

3.
Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy–Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR); C1 (F4abRPA/F4acR/F4adRFA); C2 (F4abRPA/F4acR/F4adRPA); D1 (F4abR/F4acR/F4adRFA); D2 (F4abR/F4acR/F4adRPA); E (F4abR/F4acR/F4adR).  相似文献   

4.
Enterotoxigenic Escherichia coli (ETEC) is a type of pathogenic bacteria that cause diarrhea in piglets through colonizing pig small intestine epithelial cells by their surface fimbriae. Different fimbriae type of ETEC including F4, F18, K99 and F41 have been isolated from diarrheal pigs. In this study, we performed a genome-wide association study to map the loci associated with the susceptibility of pigs to ETEC F41 using 39454 single nucleotide polymorphisms (SNPs) in 667 F2 pigs from a White Duroc×Erhualian F2 cross. The most significant SNP (ALGA0022658, P=5.59×10−13) located at 6.95 Mb on chromosome 4. ALGA0022658 was in high linkage disequilibrium (r2>0.5) with surrounding SNPs that span a 1.21 Mb interval. Within this 1.21 Mb region, we investigated ZFAT as a positional candidate gene. We re-sequenced cDNA of ZFAT in four pigs with different susceptibility phenotypes, and identified seven coding variants. We genotyped these seven variants in 287 unrelated pigs from 15 diverse breeds that were measured with ETEC F41 susceptibility phenotype. Five variants showed nominal significant association (P<0.05) with ETEC F41 susceptibility phenotype in International commercial pigs. This study provided refined region associated with susceptibility of pigs to ETEC F41 than that reported previously. Further works are needed to uncover the underlying causal mutation(s).  相似文献   

5.
Intermuscular fat content in protected designations of origin dry‐cured hams is a very important meat quality trait that affects the acceptability of the product by the consumers. An excess in intermuscular fat (defined as the level of fat deposition between leg muscles) is a defect that depreciates the final product. In this study we carried out a genome‐wide association study for visible intermuscular fat (VIF) of hams in the Italian Large White pig breed. This trait was evaluated on the exposed muscles of green legs in 1122 performance‐tested gilts by trained personnel, according to a classification scale useful for routine and cheap evaluation. All animals were genotyped with the Illumina PorcineSNP60 BeadChip. The genome‐wide association study identified three QTL regions on porcine chromosome 1 (SSC1; accounting for ~79% of the SNPs below the 5.0E?04 threshold) and SSC2, two on SSC7 and one each on SSC3, SSC6, SSC9, SSC11, SSC13, SSC15, SSC16 and SSC17. The most significant SNP (ALGA0004143 on SSC1 at 77.3 Mb; PFDR < 0.05), included in the largest QTL region which spanned about 6.8 Mb on SSC1, is located within the glutamate ionotropic receptor kainate type subunit 2 (GRIK2) gene. Functional annotation of all genes included in QTL regions for VIF suggested that intermuscular fat in the Italian Large White breed is a complex trait apparently influenced by complex biological mechanisms also involving obesity‐related processes. These QTL target mainly chromosome regions different from those affecting subcutaneous and intramuscular fat deposition.  相似文献   

6.
7.
Zhang B  Ren J  Yan X  Huang X  Ji H  Peng Q  Zhang Z  Huang L 《Animal genetics》2008,39(3):258-266
Enterotoxigenic Escherichia coli (ETEC) F4ab and F4ac are major determinants of piglet diarrhoea. The locus for the ETEC F4ab/ac receptor has been mapped to SSC13q41. MUC13 is a transmembrane mucin expressed predominantly in the epithelial surface of the gastrointestinal tract and the MUC13 gene was assigned to SSC13q41, supporting it as a positional candidate gene for the ETEC F4ab/ac receptor. We herein determined the complete 2679-bp cDNA of pig MUC13, and proved that it was most highly expressed in the jejunum and moderately expressed in the trachea, stomach and liver. Furthermore, 13 MUC13 polymorphisms were identified in 19 founder animals of a White Duroc x Erhualian resource population, and a total of 727 F(2) animals with in vitro ETEC F4ab/ac adhesion phenotypes in this population were genotyped for three identified MUC13 polymorphisms including c.576C>T, c.908A>G and c.935A>C. The transmission disequilibrium test showed that the MUC13 alleles and haplotypes were significantly associated with susceptibility/resistance to ETEC F4ab/ac, especially between haplotype [C;G;A] and susceptibility to ETEC F4ac (P = 8.0e-18). Animals inheriting this haplotype were predominantly susceptible to ETEC F4ac (n = 291/303). Moreover, nearly all animals homozygous for haplotype [T;G;C] (n = 39/41) and a majority of those with the [C;A;A]/[T;G;C] haplotype pair (n = 79/88) were resistant to ETEC F4ab. Our results indicated that MUC13 is in strong linkage disequilibrium with the ETEC F4ab/ac receptor locus and provided potential markers for selection of ETEC F4ab/ac-resistant animals in the pig breeding scheme.  相似文献   

8.
Infection of the small intestine by enterotoxigenic Escherichia coli F4ab/ac is a major welfare problem and financial burden for the pig industry. Natural resistance to this infection is inherited as a Mendelian recessive trait, and a polymorphism in the MUC4 gene segregating for susceptibility/resistance is presently used in a selection programme by the Danish pig breeding industry. To elucidate the genetic background involved in E. coli F4ab/ac susceptibility in pigs, a detailed haplotype map of the porcine candidate region was established. This region covers approximately 3.7 Mb. The material used for the study is a three generation family, where the founders are two Wild boars and eight Large White sows. All pigs have been phenotyped for susceptibility to F4ab/ac using an adhesion assay. Their haplotypes are known from segregation analysis using flanking markers. By a targeted approach, the candidate region was subjected to screening for polymorphisms, mainly focusing on intronic sequences. A total of 18 genes were partially sequenced, and polymorphisms were identified in GP5, CENTB2, APOD, PCYT1A, OSTalpha, ZDHHC19, TFRC, ACK1, MUC4, MUC20, KIAA0226, LRCH3 and MUC13 . Overall, 227 polymorphisms were discovered in the founder generation. The analysis revealed a large haplotype block, spanning at least 1.5 Mb around MUC4 , to be associated with F4ab/ac susceptibility.  相似文献   

9.
In pigs, susceptibility to enterotoxigenic Escherichia coli (ETEC) K88 strains (locus F4bcR) is determined by a dominant allele, with the recessive allele determining resistance. The susceptible allele also appeared to be associated with higher growth rate even with discordant results. A single nucleotide polymorphism (SNP) in exon 7 of the mucin 4 (MUC4) gene (DQ848681:g.8227C>G), shown to be in close linkage disequilibrium with the F4bcR locus, has been used as marker to identify susceptible pigs, substituting invasive villous adhesion tests. We herein analyzed this SNP in Italian local breeds and applied a selective genotyping approach in Italian Large White, Italian Landrace, and Italian Duroc comparing allele frequency distribution in groups of pigs with extreme estimated breeding values (EBV) for average daily gain (ADG) and backfat thickness (BFT) to evaluate if this marker is associated with these traits. Allele G (associated with susceptibility to ETEC) was associated with higher ADG and BFT in Italian Large White (P = 6.66E-04 and P = 0.012, respectively) and higher ADG in Italian Landrace (P = 7.23E-12). This polymorphism was poorly informative in Italian Duroc. Antagonistic associations of the MUC4 g.8227C>G alleles on susceptibility to ETEC and growth performances evidence the complexity of applying marker assisted selection in pig breeding.  相似文献   

10.
The Escherichia coli F18 receptor locus (ECF18R) has been genetically mapped to the halothane linkage group on porcine Chromosome (Chr) 6. In an attempt to obtain candidate genes for this locus, we isolated 5 cosmids containing the α(1,2)fucosyltransferase genes FUT1, FUT2, and the pseudogene FUT2P from a porcine genomic library. Mapping by fluorescence in situ hybridization placed all these clones in band q11 of porcine Chr 6 (SSC6q11). Sequence analysis of the cosmids resulted in the characterization of an open reading frame (ORF), 1098 bp in length, that is 82.3% identical to the human FUT1 sequence; a second ORF, 1023 bp in length, 85% identical to the human FUT2 sequence; and a third FUT-like sequence thought to be a pseudogene. The FUT1 and FUT2 loci therefore seem to be the porcine equivalents of the human blood group H and Secretor loci. Direct sequencing of the two ORFs in swine being either susceptible or resistant to adhesion and colonization by F18 fimbriated Escherichia coli (ECF18) revealed two polymorphisms at bp 307 (M307) and bp 857 (M857) of the FUT1 ORF. Analysis of these mutations in 34 Swiss Landrace families with 221 progeny showed close linkage with the locus controlling resistance and susceptibility to E. coli F18 adhesion and colonization in the small intestine (ECF18R), and with the locus of the blood group inhibitor S. A high linkage disequilibrium of M307ECF18R in Large White pigs makes the M307 mutation a good marker for marker-assisted selection of E. coli F18 adhesion-resistant animals in this breed. Whether the FUT1 or possibly the FUT2 gene products are involved in the synthesis of carbohydrate structures responsible for bacterial adhesion remains to be determined. Received: 17 February 1997 / Accepted: 30 May 1997  相似文献   

11.
Fu WX  Liu Y  Lu X  Niu XY  Ding XD  Liu JF  Zhang Q 《PloS one》2012,7(3):e32127
Enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbria is the major pathogenic bacteria causing diarrhoea in neonatal and post-weaning piglets. Previous studies have revealed that the susceptibility to ETEC F4ab/F4ac is an autosomal Mendelian dominant trait and the loci controlling the F4ab/F4ac receptor are located on SSC13q41, between markers SW207 and S0283. To pinpoint these loci and further validate previous findings, we performed a genome-wide association study (GWAS) using a two generation family-based population, consisting of 301 piglets with phenotypes of susceptibility to ETEC F4ab/F4ac by the vitro adhesion test. The DNA of all piglets and their parents was genotyped using the Illumina PorcineSNP60 BeadChip, and 50,972 and 50,483 SNPs were available for F4ab and F4ac susceptibility, respectively, in the association analysis after quality control. In summary, 28 and 18 significant SNPs (p<0.05) were detected associated with F4ab and F4ac susceptibility respectively at genome-wide significance level. From these significant findings, two novel candidate genes, HEG1 and ITGB5, were firstly identified as the most promising genes underlying F4ab/F4ac susceptibility in swine according to their functions and positions. Our findings herein provide a novel evidence for unravelling genetic mechanism of diarrhoea risk in piglets.  相似文献   

12.
Protected designation of origin dry‐cured hams are the most important productions of the Italian heavy pig industry. Hams capable of minimal seasoning losses produce better quality dry‐cured hams. Ham weight loss during the first 7 days in brine (first salting) is highly correlated with the total loss of weight up to the end of seasoning, and it has quite high heritability (0.30–0.61). For these reasons, ham weight loss at first salting has been included as a meat quality trait in the Italian heavy pig selection program. In this work, we carried out a genome‐wide association study for this parameter in the Italian Large White pig breed by genotyping 1365 animals with the Illumina BeadChip PorcineSNP60 chip. A total of 44 single nucleotide polymorphisms (SNPs) had a Pnominal value below 5.0E‐04, five of which were below 5.0E‐05 and one of them (ALGA0057985 on chromosome 10) was associated with this trait at a PBonferroni threshold of 0.10. These SNPs identified a total of at least 29 putative QTLs that were located on most porcine autosomal chromosomes. This study provides genomic information that could be useful in dissecting this complex trait by identifying potential candidate genes whose function could contribute to understanding the biological mechanisms affecting meat quality for seasoning aptitude.  相似文献   

13.
Growth‐related traits are complex and economically important in the livestock industry. The aim of this study was to identify quantitative trait loci (QTL) and the associated positional candidate genes affecting growth in pigs. A genome‐wide association study (GWAS) was performed using the porcine single‐nucleotide polymorphism (SNP) 60K bead chip. A mixed‐effects model and linear regression approach were used for the GWAS. The data used in the study included 490 purebred Landrace pigs. All experimental animals were genotyped with 39 438 SNPs located throughout the pig autosomes. We identified a strong association between a SNP marker on chromosome 16 and body weight at 71 days of age (ALGA0092396, P = 5.35 × 10?9, Bonferroni adjusted < 0.05). The SNP marker was located near the genomic region containing IRX4, which encodes iroquois homeobox 4. This SNP marker could be useful in the selective breeding program after validating its effect on other populations.  相似文献   

14.
Intramuscular fat (IMF) is an important meat‐quality trait of pigs, which influences pork’s shearing force, hydraulics, tenderness and juicy flavor. However, to achieve a higher percentage of lean meat, pigs with lower backfat thickness (BF) are intensively selected for, which may lead to a reduction in pork quality. Therefore, the objective of this study was to locate loci that affect IMF without changing BF. A single‐step GWAS was performed on 950 Duroc pigs genotyped by a 50K SNP chip in order to detect genomic variants relevant to IMF and BF. The significant SNPs detected were afterwards divided into a BF subset (seven SNPs), an IMF subset (11 SNPs) and a subset of both traits (12 SNPs), according to their P‐value and LD. After SNP and QTL annotation, our results indicated that SSC1: 167938652, 166363826, 164829874 and 167171587 might be associated with IMF without changing BF. In the subset of both traits, we found that the combined effect of ALGA0006602 (SSC1: 159538854) and 12784636 (SSC1: 160773437) might improve the IMF without changing BF. Our gene annotation result showed that TLE3, ITGA11, SMAD6, PAQR5 and [RNF152A/G × MC4RA/A] genes might affect IMF independently of BF. We believe that the SNPs and genes identified in this study will be valuable for the future molecular breeding of IMF in Duroc pigs.  相似文献   

15.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in neonatal and postweaning pigs. F41 is one of ETEC fimbriae that adhere to the small intestinal epithelium and lead to development of diarrhoea. The genetic architecture of susceptibility to ETEC F41 remains elusive in pigs. In this study, we determined the in vitro adhesion phenotypes of ETEC F41 in a total of 835 F2 animals from a White Duroc × Erhualian intercross, and performed a genome scan using both F2 and half-sib analyses with 183 microsatellite markers to detect quantitative trait loci (QTL) for porcine susceptibility to ETEC F41. The two analyses consistently revealed a 1% genome-wide significant QTL on pig chromosome 4. Moreover, we determined F41 adhesion phenotypes in 14 purebred Erhualian and 14 White Duroc pigs. The results showed that both the founder breeds are segregating for the F41 adhesion phenotype, while less percentage of Erhualian pigs were adhesive to ETEC F41 compared to White Duroc pigs.  相似文献   

16.
17.
The aim of this study was to identify copy number variants (CNVs) in Italian Large White pigs and test them for association with back fat thickness (BFT). Within a population of 12 000 performance‐tested pigs, two groups of animals with extreme and divergent BFT estimated breeding values (EBVs; 147 with negative and 150 with positive EBVs) were genotyped with the Illumina Porcine SNP60 BeadChip. CNVs were detected with penncnv software. We identified a total of 4146 CNV events in 170 copy number variation regions (CNVRs) located on 15 porcine autosomes. Validation of detected CNVRs was carried out (i) by comparing CNVRs already detected by other studies and (ii) by semiquantitative fluorescent multiplex (SQFM) PCR of a few CNVRs. Most of CNVRs detected in Italian Large White pigs (71.2%) were already reported in other pig breeds/populations, and 82.1% of the CNV events detected by penncnv were confirmed by SQFM PCR. For each CNVR, we compared the occurrence of CNV events between the pigs of the high and low BFT EBV tails. Sixteen regions showed significance at < 0.10, and seven were significant at < 0.05 but were not significant after Bonferroni correction (Fisher's exact test). These results indicated that CNVs could explain a limited fraction of the genetic variability of fat deposition in Italian Large White pigs. However, it was interesting to note that one of these CNVRs encompassed the ZPLD1 gene. In humans, a rare CNV event including this gene is associated with obesity. Studies identifying CNVs in pigs could assist in elucidating the genetic mechanisms underlying human obesity.  相似文献   

18.
X. Li  S. Yang  K. Dong  Z. Tang  K. Li  Z. Wang  B. Liu 《Animal genetics》2017,48(5):600-605
Selection affects the patterns of linkage disequilibrium (LD) around the site of a beneficial allele with an increase in LD among the hitchhiking alleles. Comparing the differences in regional LD between pig populations could help to identify putative genomic regions with potential adaptations for economic traits. In this study, using Illumina Porcine SNP60K BeadChip genotyping data from 207 Chinese indigenous, 117 South American village and 408 Large White pigs, we estimated the variation of genome‐wide LD between populations using the varld program. The top 0.1% standardized VarLD scores were used as a criterion for all comparisons, and compared with LD blocks, a total of four selection signatures on Sus scrofa chromosome (SSC) 7, 9, 13 and 14 were identified in all populations. These signatures overlapped with quantitative trait loci for linoleic acid content, age at puberty, number of muscle fibers per unit area, hip structure and body weight traits in pigs. Among them, one of the signatures (56.5–56.6 Mb on SSC7) in Large White pigs harbored the ADAMTSL3 gene, which is known to affect body length. The findings of this study seem to point toward recent selection in different pig populations. Further investigations are encouraged to confirm the selection signatures detected by varld in the present study.  相似文献   

19.
PLIN2 (perilipin 2) is a cytosolic protein that promotes the formation and stabilization of the intracellular lipid droplets, organelles involved in the storage of lipid depots. Porcine PLIN2 gene represents a biological and positional candidate for fat deposition, a polygenic trait that affects carcass and meat quality. The aim of the present study was to screen PLIN2 gene for polymorphisms, to evaluate the association with carcass quality traits, and to investigate the gene expression in skeletal muscle. Six new single nucleotide polymorphisms (SNP) were detected by sequencing 32 samples from five pig breeds (Italian Large White, Italian Duroc, Italian Landrace, Belgian Landrace, Pietrain). Two SNP localized in introns, two in the 3′-untranslated region (UTR), and two missense SNP were found in exons. A 3′-UTR mutation (GU461317:g.98G>A), genotyped in 290 Italian Duroc pigs by High Resolution Melting, resulted significantly associated (P < 0.01) with average daily gain, feed conversion ratio, lean cuts and hams weight estimated breeding values. PLIN2 gene expression analysis in skeletal muscle of Italian Large White and Italian Duroc pigs divergent for backfat thickness and visible intermuscular fat showed a trend of higher expression level in pigs with higher intermuscular fat. These results suggest that PLIN2 can be a marker for carcass quality in pigs. Further investigation at both gene and protein level could elucidate its role on fat deposition.  相似文献   

20.
Due to the direction, intensity, duration and consistency of genetic selection, especially recent artificial selection, the production performance of domestic pigs has been greatly changed. Therefore, we reasoned that there must be footprints or selection signatures that had been left during domestication. In this study, with porcine 60K BeadChip genotyping data from both commercial Large White and local Chinese Tongcheng pigs, we calculated the extended haplotype homozygosity values of the two breeds using the long‐range haplotype method to detect selection signatures. We found 34 candidate regions, including 61 known genes, from Large White pigs and 25 regions comprising 57 known genes from Tongcheng pigs. Many selection signatures were found on SSC1, SSC4, SSC7 and SSC14 regions in both populations. According to quantitative trait loci and network pathway analyses, most of the regions and genes were linked to growth, reproduction and immune responses. In addition, the average genetic differentiation coefficient FST was 0.254, which means that there had already been a significant differentiation between the breeds. The findings from this study can contribute to further research on molecular mechanisms of pig evolution and domestication and also provide valuable references for improvement of their breeding and cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号