首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of lanthanides in preference to radioisotopes as probes for various biological assays has gained enormous popularity. The introduction of lanthanide chelates to peptides/proteins can be carried out either in solution using a commercially available labelling kit or by solid‐phase peptide synthesis using an appropriate lanthanide chelate. Herein, a detailed protocol for the latter is provided for the labelling of peptides or small proteins with diethylenetriamine‐N, N, N″, N″‐tetra‐tert‐butyl acetate‐N′‐acetic acid (DTPA) chelate or other similar chelates on a solid support using a chimeric insulin‐like peptide composed of human insulin‐like peptide 5 (INSL5) A‐chain and relaxin‐3 B‐chain as a model peptide. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
This report presents an entirely chemical, general strategy for the synthesis of relaxin‐2 and insulin‐like peptide 5. Historically, these two peptides have represented two of the more synthetically challenging members of the insulin superfamily. The key synthetic steps involve two sequential oxime ligations to covalently link the individual A‐chain and B‐chain, followed by disulfide bond formation under aqueous, redox conditions. This is followed by two chemical reactions that employ diketopiperazine cyclization‐mediated cleavage and ester hydrolysis to liberate the connecting peptide and the heterodimeric product. This approach avoids the conventional iodine‐mediated disulfide bond formation and enzyme‐assisted proteolysis to generate biologically active two‐chain peptides. This novel synthetic strategy is ideally suited for peptides such as relaxin and insulin‐like peptide 5 as they possess methionine and tryptophan that are labile under strong oxidative conditions. Additionally, these peptides possess multiple arginine and lysine residues that preclude the use of trypsin‐like enzymes to obtain biologically active hormones. This synthetic methodology is conceivably applicable to other two‐chain peptides that contain multiple disulfide bonds. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The insulin superfamily comprises a group of peptides with diverse physiological functions and is conserved across the animal kingdom. Insulin-like peptides (ILPs) of crustaceans are classified into four major types: insulin, relaxin, gonadulin, and androgenic gland hormone (AGH)/insulin-like androgenic gland factor (IAG). Of these, the physiological functions of AGH/IAG have been clarified to be the regulation of male sex differentiation, but those of the other types have not been uncovered. In this study, we chemically synthesized Maj-ILP1, an ILP identified in the ovary of the kuruma prawn Marsupenaeus japonicus, using a combination of solid-phase peptide synthesis and regioselective disulfide bond formation reactions. As the circular dichroism spectral pattern of synthetic Maj-ILP1 is typical of other ILPs reported thus far, the synthetic peptide likely possessed the proper conformation. Functional analysis using ex vivo tissue incubation revealed that Maj-ILP1 significantly increased the expression of the yolk protein genes Maj-Vg1 and Maj-Vg2 in the hepatopancreas and Maj-Vg1 in the ovary of adolescent prawns. This is the first report on the synthesis of a crustacean ILP other than IAGs and also shows the positive relationship between the reproductive process and female-dominant ILP.  相似文献   

4.
Site‐specific labeling of synthetic peptides carrying N‐methoxyglycine (MeOGly) by isothiocyanate is demonstrated. A nonapeptide having MeOGly at its N‐terminus was synthesized by the solid‐phase method and reacted with phenylisothiocyanate under various conditions. In acidic solution, the reaction specifically gave a peptide having phenylthiourea structure at its N‐terminus, leaving side chain amino group intact. The synthetic human β‐defensin‐2 carrying MeOGly at its N‐terminus or the side chain amino group of Lys10 reacted with phenylisothiocyanate or fluorescein isothiocyanate also at the N‐methoxyamino group under the same conditions, demonstrating that this method is generally useful for the site‐specific labeling of linear synthetic peptides as well as disulfide‐containing peptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Peptide chemical ligation chemistries, which allow the chemoselective coupling of unprotected peptide fragments, are useful tools for synthesizing native polypeptides or unnatural peptide‐based macromolecules. We show here that the phenylthiocarbonyl group can be easily introduced into peptides on α or ε amino groups using phenylthiochloroformate and standard solid‐phase method. It reacts chemoselectively with cysteinyl peptides to give an alkylthiocarbamate bond. S,N‐shift of the alkylaminocarbonyl group from the Cys side chain to the α‐amino group did not occur. The method was used for linking two peptide chains through their N‐termini, for the synthesis of a cyclic peptide or for the synthesis of di‐ or tetravalent multiple antigenic peptides (MAPs). Thiocarbamate ligation is thus complementary to thioether, thioester or disulfide ligation methods. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Sublancin is an S‐linked glycopeptide produced by Bacillus subtilis 168 and consists of 37 amino acid residues with two disulfide bonds. In this study, we synthesized sublancin by Fmoc‐based solid‐phase peptide synthesis and chemoselective disulfide formation reactions. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Incorporation of ferrocenyl group to peptides is an efficient method to alter their hydrophobicity. Ferrocenyl group can also act as an electrochemical probe when incorporated onto functional peptides. Most often, ferrocene is incorporated onto peptides post‐synthesis via amide, ester or triazole linkages. Stable amino acids containing ferrocene as a C‐linked side chain are potentially useful building units for the synthesis of ferrocene‐containing peptides. We report here an efficient route to synthesize ferrocene‐containing amino acids that are stable and can be used in peptide synthesis. Coupling of 2‐ferrocenyl‐1,3‐dithiane and iodides derived from aspartic acid or glutamic acid using n‐butyllithium leads to the incorporation of a ferrocenyl unit to the δ‐position or ε‐position of an α‐amino acid. The reduction or hydrolysis of the dithiane group yields an alkyl or an oxo derivative. The usability of the synthesized amino acids is demonstrated by incorporating one of the amino acids in both C‐terminus and N‐terminus of tripeptides in solution phase. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
N‐terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N‐amidino‐amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block—N‐amidino‐pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N‐amidino‐proline using RuO4 did not produce positive results, N‐amidino‐Glp‐Phe‐OH was synthesized on Wang polymer by cyclization of α‐guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N‐amidino‐Glp‐Phe‐OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N‐amidino‐Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Protoxin II is biologically active peptide containing the inhibitory cystine knot motif. A synthetic version of the toxin was generated with standard Fmoc solid phase peptide synthesis. If N‐methylmorpholine was used as a base during synthesis of the linear protoxin II, it was found that a significant amount of racemization (approximately 50%) was observed during the process of cysteine residue coupling. This racemization could be suppressed by substituting N‐methylmorpholine with 2,4,6‐collidine. The crude linear toxin was then air oxidized and purified. Electrophysiological assessment of the synthesized protoxin II confirmed its previously described interactions with voltage‐gated sodium channels. Eight other naturally occurring inhibitory knot peptides were also synthesized using this same methodology. The inhibitory potencies of these synthesized toxins on Nav1.7 and Nav1.2 channels are summarized. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
We report the synthesis of bombyxin-IV, a disulfide-linked, heterodimeric, insulin superfamily peptide from the silkworm,Bombyx mori. The two chains (A- and B-chains) were synthesized separately by the solid-phase method using fluoren-9-ylmethoxycarbonyl (Fmoc) group as a protecting group for -amino group. Three disulfide bonds were bridged step by step (A6–A11, A20–B22, and A7–B10) in a good yield. Synthetic bombyxin-IV was identical with natural one with regard to the retention time on a reversed-phase column and the molecular weight measured by mass spectrometry. Circular dichroism (CD) spectrum of the synthetic bombyxin-IV was very similar to that of the natural one. The specific activity of synthetic bombyxin-IV is equal to that of natural one (0.1 ng/Samia unit). These results suggest that the synthetic bombyxin-IV has the tertiary structure identical with the natural peptide. Our method developed for synthesis of bombyxin-IV would be generally applicable to the synthesis of insulin-like heterodimeric peptides.  相似文献   

11.
Human glycodelin consists of 162 amino acid residues and two N‐linked glycans at Asn28 and Asn63. In this study, we synthesized it by a fully convergent strategy using native chemical ligation (NCL) in N to C direction. The four peptide segments corresponding to 1–31, 32–65, 66–105 and 106–162 sequences were synthesized by 9‐fluorenylmethoxycarbonyl based solid‐phase peptide synthesis. At the C‐terminus of the second segment, N‐ethyl‐S‐acetamidomethyl‐cysteine was attached as a post‐ligation thioesterification device. The N‐terminal two segments were condensed by the homocysteine‐mediated NCL at Leu‐Met site, and the product was methylated to convert homocysteine to methionine. After deprotection of acetamidomethyl group on the N‐ethylcysteine residue, the peptide was thioesterified by N‐alkylcysteine‐assisted method. The product was then ligated with the C‐terminal half, which was obtained by the NCL of third and fourth segments, to give the full‐length glycodelin. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
We report the synthesis of bombyxin-IV, a disulfide-linked, heterodimeric, insulin superfamily peptide from the silkworm,Bombyx mori. The two chains (A- and B-chains) were synthesized separately by the solid-phase method using fluoren-9-ylmethoxycarbonyl (Fmoc) group as a protecting group for α-amino group. Three disulfide bonds were bridged step by step (A6–A11, A20–B22, and A7–B10) in a good yield. Synthetic bombyxin-IV was identical with natural one with regard to the retention time on a reversed-phase column and the molecular weight measured by mass spectrometry. Circular dichroism (CD) spectrum of the synthetic bombyxin-IV was very similar to that of the natural one. The specific activity of synthetic bombyxin-IV is equal to that of natural one (0.1 ng/Samia unit). These results suggest that the synthetic bombyxin-IV has the tertiary structure identical with the natural peptide. Our method developed for synthesis of bombyxin-IV would be generally applicable to the synthesis of insulin-like heterodimeric peptides.  相似文献   

13.
N‐glycosylation is a major modification of glycoproteins in eukaryotic cells. In Arabidopsis, great progress has been made in functional analysis of N‐glycan production, however there are few studies in monocotyledons. Here, we characterized a rice (Oryza sativa L.) osmogs mutant with shortened roots and isolated a gene that coded a putative mannosyl‐oligosaccharide glucosidase (OsMOGS), an ortholog of α‐glucosidase I in Arabidopsis, which trims the terminal glucosyl residue of the oligosaccharide chain of nascent peptides in the endoplasmic reticulum (ER). OsMOGS is strongly expressed in rapidly cell‐dividing tissues and OsMOGS protein is localized in the ER. Mutation of OsMOGS entirely blocked N‐glycan maturation and inhibited high‐mannose N‐glycan formation. The osmogs mutant exhibited severe defects in root cell division and elongation, resulting in a short‐root phenotype. In addition, osmogs plants had impaired root hair formation and elongation, and reduced root epidemic cell wall thickness due to decreased cellulose synthesis. Further analysis showed that auxin content and polar transport in osmogs roots were reduced due to incomplete N‐glycosylation of the B subfamily of ATP‐binding cassette transporter proteins (ABCBs). Our results demonstrate that involvement of OsMOGS in N‐glycan formation is required for auxin‐mediated root development in rice.  相似文献   

14.
A relaxin‐like gonad‐stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B‐chain (21 aa), C‐peptide (47 aa), and A‐chain (24 aa). There are three putative processing sites (Lys‐Arg) between the B‐chain and C‐peptide, between the C‐peptide and A‐chain, and within the C‐peptide. This structural organization revealed that the mature AscRGP is composed of A‐ and B‐chains with two interchain disulfide bonds and one intrachain disulfide bond. The C‐terminal residues of the B‐chain are Gln‐Gly‐Arg, which is a potential substrate for formation of an amidated C‐terminal Gln residue. Non‐amidated (AscRGP‐GR) and amidated (AscRGP‐NH2) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP‐GR and AscRGP‐NH2 induced oocyte maturation and ovulation in similar dose‐dependent manners. This is the first report on a C‐terminally amidated functional RGP. Collectively, these results suggest that AscRGP‐GR and AscRGP‐NH2 act as a natural gonadotropic hormone in A. scoparius.  相似文献   

15.
A methodology is presented for the facile synthesis of Arg‐containing peptides modified at the guanidine headgroup as substituted amidine cores. This process allows for the iterative construction of these Arg isosteres while the peptide is being built out on the solid support, providing a high potential for diversity in substitution pattern in the resulting peptide. A series of N‐Pmc‐substituted thioamides were condensed with deprotected δ‐N Orn‐bearing peptides while attached to the solid support using Mukaiyama's reagent as coupling reagent, yielding isosteric Arg‐containing analogs. Peptides were cleaved using trimethylsilyl trifluoromethanesulfonate/TFA and analyzed in their crude form in order to illustrate the amenability of this process toward production of peptide isolates in high crude purity. Arg‐containing peptides having a single Arg isostere were utilized to show the general utility of this approach as well as a multiple‐Arg‐containing construct, illustrating the amenability of this method toward stepwise construction of differently substituted amidine headgroups within the same peptide. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Two new rigid bi‐aromatic linkers for synthesis of peptide arrays by SPOT methodology were obtained from cellulose treated with 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine. Reaction with m‐phenylenediamine gave non‐cleavable TYPE I linker which enabled attachment of the peptides via resistant to harsh reaction conditions amide, ether, and amine bonds. Reaction with 3‐Fmoc‐aminobenzoic acid followed by thermal isomerization of the intermediate “superactive” ester producing an amide‐like bond gave TYPE II linker that was very stable during peptide synthesis. However, the peptide was cleavable, with fragment of the linker, in the presence of 1 M LiOH solution. The uniform loading of the cellulose and efficient synthesis of the peptide array was achieved by using N‐(4,6‐dimethoxy‐1,3,5‐triazin‐1‐yl)‐N‐methylmorpholinium 4‐toluenesulfonate as the coupling reagent.  相似文献   

17.
A toxin with four disulfide bridges from Tityus serrulatus venom was able to compete with 125I‐kaliotoxin on rat brain synaptosomal preparations, with an IC50 of 46 nM . The obtained amino acid sequence and molecular mass are identical to the previously described butantoxin. Enzymatic cleavages in the native peptide followed by mass spectrometry peptide mapping analysis were used to determine the disulfide bridge pattern of α‐KTx12?1. Also, after the cleavage of the first six N‐terminal residues, including the unusual disulfide bridge which forms an N‐terminus ring, the potency of the cleaved peptide was found to decrease about 100 fold compared with the native protein. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The defensin‐like antimicrobial peptides have been characterized from various other arthropods including insects, scorpions, and ticks. But no natural spider defensin‐like antimicrobial peptides have ever been isolated from spiders, except couple of cDNA and DNA sequences of five spider species revealed by previous genomic study. In this work, a defensin‐like antimicrobial peptide named Oh‐defensin was purified and characterized from the venoms of the spider, Ornithoctonus hainana. Oh‐defensin is composed of 52 amino acid (aa) residues including six Cys residues that possibly form three disulfide bridges. Its aa sequence is MLCKLSMFGAVLGV PACAIDCLPMGKTGGSCEGGVCGCRKLTFKILWDKKFG. By BLAST search, Oh‐defensin showed significant sequence similarity to other arthropod antimicrobial peptides of the defensin family. Oh‐defensin exerted potent antimicrobial activities against tested microorganisms including Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cDNA encoding Oh‐defensin precursor was also cloned from the cDNA library of O. hainana. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Clostridium difficile is a prominent nosocomial pathogen, proliferating and causing enteric disease in individuals with a compromised gut microflora. We characterized the post‐translational modification of flagellin in C. difficile 630. The structure of the modification was solved by nuclear magnetic resonance and shown to contain an N‐acetylglucosamine substituted with a phosphorylated N‐methyl‐l ‐threonine. A reverse genetics approach investigated the function of the putative four‐gene modification locus. All mutants were found to have truncated glycan structures by LC‐MS/MS, taking into account bioinformatic analysis, we propose that the open reading frame CD0241 encodes a kinase involved in the transfer of the phosphate to the threonine, the CD0242 protein catalyses the addition of the phosphothreonine to the N‐acetylglucosamine moiety and CD0243 transfers the methyl group to the threonine. Some mutations affected motility and caused cells to aggregate to each other and abiotic surfaces. Altering the structure of the flagellin modification impacted on colonization and disease recurrence in a murine model of infection, showing that alterations in the surface architecture of C. difficile vegetative cells can play a significant role in disease. We show that motility is not a requirement for colonization, but that colonization was compromised when the glycan structure was incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号