首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of silk formation inApis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.  相似文献   

2.
Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes.  相似文献   

3.
The protein synthetic and secretory activity of spider tubuliform glands is known to be coordinated with the reproductive stage of the spider. For spiders that produce multiple egg cases, such as the black widow Latrodectus hesperus, this means that the cells that make up the tubuliform gland cycle from minimal to maximal silk protein synthesis and exocytosis as the spider transitions from early vitellogenesis to a gravid state and back. The impact of these transitions on the cells that form the tubuliform gland has yet to be characterized. The entire tubuliform gland undergoes an elastic deformation, doubling in size in response to the accumulation and depletion of egg case silk proteins within its lumen. Similarly, the diversity and organization of organelles within the cytoplasm of the secretory epithelial cells that make up the wall of the tubuliform gland change with the reproductive stage of the spider. Progression of a spider from early to late vitellogenesis is accompanied by decondensed nucleoli and distention of the rough endoplasmic reticulum, markers of protein synthetic activity. The presumed silk proteins that fill the lumen of the tubuliform gland of a gravid spider include a fibrous matrix with homogeneous spherical inclusions. These components are also present within the cytoplasm of the cell; however, only the fibrous material appears to be enclosed by membranous organelles. Transition of the tubuliform gland from peak silk synthesis back to a quiescent state is marked by the appearance of multivesicular bodies and organelles resembling phagophores and autophagosomes, suggestive of a role for autophagy in the process of recovery. The reproducible cellular dynamics of the tubuliform silk gland of the black widow spider makes it a potential model system for study of the regulation of silk gene expression, endomembrane transport, and exocytosis of silk proteins and autophagy.  相似文献   

4.
慈菇匍匐茎中分泌道的初步研究   总被引:2,自引:0,他引:2  
慈茹匍蔔茎的分泌道是裂生的胞间道,分布于匍匐茎的基本组织中。单个分泌道原始细胞起始于离茎端约1毫米处的基本分生组织中,原始细胞经分裂形成5—7个上皮细胞包围着中央的裂生腔隙,成为管道系统。上皮细胞无鞘细胞包围。上皮细胞中高尔基体和内质网发达,并溢出小囊泡向着分泌道腔隙面壁的质膜附近迁移,乳汁中亦存在大量完整的小囊泡。上皮细胞和外围薄壁细胞之间的壁层具有大量胞间连丝,小囊泡和内质网的膜结构与胞间连丝末端相接,同时可见上皮细胞的质膜在数处反折内陷,形成袋状结构,在与上皮细胞相对的薄壁细胞内也有同样现象出现,袋状结构内含小形颗粒或囊泡,并在结构上显示出上皮细胞与相邻薄壁细胞间存在着活跃的物质交流。由此认为。代谢物质以整体小囊泡的形式经胞间连丝或内陷的质膜向分泌道迁移是物质运输和分泌的可能方式之一。在电镜下观察,液泡中的积聚物与乳汁十分相似,液泡可能是乳汁的贮存场所之一。  相似文献   

5.
The paper deals with the development of the salivary gland system in Melipona quadrifasciata anthidioides, which begins in the prepupal stage. The silk glands degenerate by autolysis at the end of the larval stage. Degeneration is characterized by cytoplasmic vacuolization and pycnosis of the nuclei of the secretory cells. The glandular secretory portion of degenerated silk glands separates from the excretory ducts. The salivary glands develop from the duct of the larval silk glands. The thoracic salivary glands develop from the ducts of the secretory tubules and the head salivary glands from the terminal excretory duct. The mandibular glands appear in the prepupa as invaginations of mandibular segments, and their differentiation to attain the adult configuration occurs during pupation. The hypopharyngeal glands have their origin from evaginations of the ventral anterior portion of the pharynx. A long tubule first appears with walls formed by more than one cellular layer. Then some cells separate from the lumen of the duct, staying attached to it by a cuticular channel in part intracellular. The initial duct constitutes the axial duct, in which the channel of the secretory cells opens. During the development of salivary and mandibular glands, they recapitulate primitive stages of the phylogeny of the bees. During the development of salivary glands system, mitosis accounts for only part of the growth. Most of the growth occurs by increase in size of cells rather than by cell division. In brown-eyed and pigmented pupae six days before emergence, the salivary gland system is completely developed, although not yet functioning.  相似文献   

6.
The bilateral salivary glands, ducts, and nerves of the giant garden slug Limax maximus control the secretion of saliva and its transport to the buccal mass. Each salivary nerve, which originates at the buccal ganglion, contains over 3000 axon profiles. The axons innervate the musculature of the duct and branch within the gland. The salivary duct is composed of several muscular layers surrounding an epithelial layer which lines the duct lumen. The morphology of the duct epithelium indicates that it may function in ion or water balance. The salivary gland contains four major types of secretory cells. The secretory products are released from vacuoles in the gland cells, and are presumably transported by cilia in the collecting ducts of the gland into the larger muscular ducts.  相似文献   

7.
Synthesis of protein by the major ampullate silk glands in the barn spider, Araneus cavaticus was stimulated by depleting the storage of silk protein in the ampulla by mechanically pulling fiber from the spigot. After this treatment, fine structural changes of the glandular epithelium during silk production were examined using light and transmission electron microscopes. In the process of rapid production, major secretory silk was synthesized at the tail region via rER of glandular epithelial cells, and was transported into the ampulla region. The mature secretory product in glandular epithelium appears almost spherical vacuoles which were grown up by fusion with the surrounding small vesicles including the secretory silk. Unlike to a typical process of the secretion, the ampullate silk of tail region seems to bypass either concentrating or packaging steps by the Golgi apparatus. However there's no doubt that the Golgi apparatus also play an important role in the secretory process of the ampulla region. After mechanical pulling stimulation, both epithelia of ampulla and tail regions appeared as a thinner layer of columnar cells with less definitive cell membrane. There are few secretory droplets within these cells, thus causing this region to stain much lighter. It is obvious that the cell loses part of its cytoplasm in this process, and disorganization of the secretory product occurs when it is extruded from the cells by a apocrine release.  相似文献   

8.
中华绒螯蟹(Eriocheir sinensis)雄性生殖系统的组织学研究   总被引:16,自引:1,他引:15  
中华绒螯蟹雄性生殖系统的组织学研究表明:生精小管一侧为管壁上皮,另一侧为生发区,生殖细胞由生发区基底部同管腔增殖。输精管分为输精细管和贮精囊,管壁上皮具分泌功能,贮精囊有肌肉层。射精管壁肌肉层较厚,粘膜形成纵行皱襞。副性腺内壁为单层立方上皮。生殖系统发育有明显的季节性,8月开始发育加速,10月进入高峰,4月开始发育停滞。  相似文献   

9.
The fine structure of the reproductive accessory gland of the parthenogenetic thrips Heliothrips haemorrhoidalis (Thysanoptera : Thripidae) is reported. It consists of an apical bulb and a fine gland duct. The former consists of an epithelium with secretory and duct-forming cells surrounding a large gland lumen lined with a thin cuticle and filled with dense secretion. Spent secretory cells degenerate and are eliminated from the epithelium. The gland duct is characterized by an irregular, branched lumen surrounded by a very flat epithelium. A valve controls the opening of the duct lumen. The proximal gland duct runs through a cuticular papilla that opens between the dorsal ovipositor valves. The secretions may serve for ovipositor valve lubrication and possibly to protect laid eggs. Observations of serial sections through the vagina exclude the presence of a spermatheca in this species.  相似文献   

10.
The head, body, and tail regions of the epididymal duct (or caput, corpus, and cauda epididymis) in two healthy and sexually mature Sus domesticus males were examined by light microscopy and by scanning or transmission electron microscopy. The epididymal duct is lined with a pseudostratified epithelium with stereocilia and covered by a muscular-connective tissue sheath that is thickest in the tail region. Diameter of the epididymal duct and height of epididymal epithelium are maximal in the head region. Length of the sterocilia and spermatic density are higher in the head and body regions. Somatic cells are abundant in the tail region. The epididymal epithelium is made up of five cell types: basal cells, principal cells, clear cells, narrow cells, and basophilic cells. Abundant secretory units are observed in the supranuclear cytoplasm of columnar principal cells. Each mature secretory unit is constituted by electron-dense secretion granules covered by more than eight layers of cisternae of reticulum between which the mitochondria are intercalated. In the apical cytoplasm the isolated secretion granules become larger and less electron dense. The apical surface is covered by numerous sterocilia. Basal cells are pyramidal and less high than principal cells. The clear cells, arranged between the principal cells, are characterized by the presence of abundant vesicular elements and electron-lucid secretion granules, and by an apocrine secretory process. The narrow cells are characterized by their highly vacuolized cytoplasm. Intermediate cell typologies can be found among basal, principal, clear, and narrow cells, which could be four developmental stages of the same cell type. The basophilic cells are spheroidal and are found at different levels between the epithelial cells and in the connective tissue underlying the epithelium. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Virgin mosquitoes were studied with the electron microscope. Spermathecal duct walls contain cuticle, epithelium, and a richly innervated spiral muscle; myocytes are linked by desmosome-like attachment plaques to the underlying epithelium. Periductal cells along upper portions of the ducts have a large secretory droplet within a highly irregular extracellular lacuna and are attached to a long secretory ductule through which finely granular material is delivered to the duct lumen and this enters the spermathecae. Basal gland cells of spermathecae have short ductules containing secretion in virgins. Secretory material in spermathecae of virgins does not form a complete internal membrane.  相似文献   

12.
[目的]明确宽翅曲背蝗Pararcyptera microptera meridionalis雌虫受精囊的形态、组织结构与超微结构,为更好地认识昆虫受精囊的功能提供依据.[方法]本研究以宽翅曲背蝗已交配雌成虫为实验材料,利用光学显微镜和透射电子显微镜观察其受精囊的形态、组织结构和超微结构.[结果]宽翅曲背蝗受精囊由一个端囊和一条长的受精囊管组成,端囊用于储存精子.端囊和受精囊管有相似的组织学结构,由外到内依次为肌肉层、基膜、上皮层及表皮内膜.上皮层含上皮细胞、腺细胞和导管细胞3种细胞类型.腺细胞具有一个被有微绒毛的细胞外腔.腺细胞的分泌物经细胞外腔通过分泌导管进入到受精囊腔.分泌导管由导管细胞形成.[结论]在宽翅曲背蝗受精囊的端囊和受精囊管上,内膜和腺细胞的细胞外腔结构均存在差异,由此推测,端囊和受精囊管的功能存在一定差异.上皮细胞的超微结构特点显示上皮细胞具有支持、分泌和吸收的功能.  相似文献   

13.
THE FINE STRUCTURE OF VON EBNER''S GLAND OF THE RAT   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of von Ebner's gland was studied in untreated rats and rats stimulated to secrete by fasting-refeeding or injection of pilocarpine. Cytological features were similar to those reported for pancreas and parotid gland. Abundant granular endoplasmic reticulum filled the basal portion of the cell, a well-developed Golgi complex was located in the vicinity of the nucleus, and the apical portion of the cell was filled with dense secretory granules. Dense heterogeneous bodies resembling lysosomes were closely associated with the Golgi complex. Coated vesicles were seen in the Golgi region and also in continuity with the cell membrane. Granule discharge occurred by fusion of the granule membrane with the cell membrane at the secretory surface. Successive fusion of adjacent granules to the previously fused granule formed a connected string of granules in the apical cytoplasm. Myoepithelial cells were present within the basement membrane, and nerve processes were seen adjacent to acinar and myoepithelial cells. Duct cells resembled the intercalated duct cells of the major salivary glands.  相似文献   

14.
Inside the labrum of Leptestheria dahalacensis are situated three types of large epidermal gland cells, whose ducts open onto the outer dorsal surface of the labrum. SEM revealed that the thin ducts of the A-type gland cells open out behind the epipharynx at the end of small, conically shaped protuberances, the two paired ducts of the B-type gland cells lead into the distal portion of the labrum, and the external opening of the single duct of the C-type gland cells lies on the dorsal lobe of the labrum. The ducts of the three different gland cell types have the same fundamental constitution, but vary in diameter. Each secretory unit consists of a pair of gland cells (A, B, or C) and a secretory duct. The duct is formed by ring-shaped folding of one anteroposteriorly elongated epidermal cell (duct cell), whose ends adhere closely to one another. A further ring-folded epidermal cell (accessory cell), but flattened in shape, is interposed, like a sleeve-connection, between the gland cells and the duct cell. The reservoirs of gland cells open into the lumen of the duct. Discontinuous deposits of highly electron-dense matter are present on the plasma membrane of the accessory cell delimiting the initial part of the duct lumen, while the plasma membrane of the duct cell facing the lumen is cuticularized. The cytoplasm of the accessory cell, on examination by TEM, appears quite similar to that of the duct cell, except for the different distribution and greater abundance of microtubules. Similarly organized tricellular tegumental glands also commonly occur in other Crustacea, both Malacostraca and non-Malacostraca. Possible functions of secretions from the three different types of gland cells present in the labrum of L. dahalacensis are discussed.  相似文献   

15.
Evidence for an exocrine function of theAplysia atrial gland   总被引:1,自引:0,他引:1  
Summary The fact that the atrial gland ofAplysia californica contains peptides that will induce egg laying when injected into mature animals prompts consideration of the role played by the gland in the normal physiology of the animal. We have approached this consideration with a combination of morphologic and physiologic investigations. Morphologic study reveals the gland as a stratified epithelium comprised of three cell types. The only evidence for secretory activity was seen in the columnar epithelial cells containing large vesicular inclusions. These cells appear to discharge their secretory product into the lumen of the large hermaphroditic duct. While we cannot specify the contents of the secretion from the columnar cells, perfusate of the duct lumen contained bioassay active material only when the duct was exposed to depolarizing conditions. Though additional experiments in which exogenously administered atrial gland peptides were found to initiate egg laying in animals from which the source of the egg laying neurohormone had been extirpated, it appears likely that the atrial gland substances are not endocrine factors. Instead, their function must be sought among the exocrine products of the duct epithelium.Abbreviations FWS filtered artificial sea water - LHD large hermaphroditic duct Technical assistance for these studies was ably provided by Eugene Dannen and Gary Whitney. The surgical procedures were developed by Greg Thayer. Funding for the work was provided by NIH grant NS 11149 to S.A.  相似文献   

16.
The microstructural characteristics of the capture thread production from silk glands in the orb web spiders were analyzed using scanning and transmission electron microscopes. Sticky and gluey capture threads of the web are originated from the silks of two flagelliform glands and four aggregate glands. They supply precursors of the secretory silks to a pair of characteristic “triad” spinning units on the posterior spinnerets. The aggregate gland is composed of large and multi‐lobed secretory region and thick excretory duct surrounded by large irregular nodules. The excretory duct of this gland basically consists of three superposed types of cells which are inner columnar epithelium, nodule forming cells and outer connectives. The nodules contain numerous mitochondria and glycogen particles within their cytoplasm and they are surrounded by the same sheath of thin connective tissues. Secretory region of the aggregate gland which produce water‐soluble components of the capture thread comprises discrete secretory vesicles and extensive rough endoplasmic reticulum. Characteristically, secretory droplets are formed without involvement of the Golgi complexes, suggesting that they do not play an important role in the processing of the capture threads. However the electron densities and internal textures of the granules are observed with diverse according to their maturation level. Finally, the secretory products are released by the mechanism of apocrine secretion losing part of their cytoplasm during this process.  相似文献   

17.
【目的】蟋螽是直翅目中唯一具有吐丝筑巢行为的类群。本研究旨在探讨蟋螽丝腺的结构特点。【方法】应用解剖学观察、免疫荧光、苏木精-伊红染色、PAS苏木精染色、扫描电镜和透射电镜等方法从细胞水平对黑缘烟蟋螽Capnogryllacris nigromarginata丝腺的显微与超微结构进行了观察。【结果】黑缘烟蟋螽丝腺由导管和腺泡构成。腺泡由鞘细胞延伸形成的结缔组织鞘包围。腺泡的主体有4种细胞,分别为Ⅰ型分泌细胞、Ⅱ型分泌细胞、围细胞和腔细胞。Ⅰ型和Ⅱ型分泌细胞为大的腺细胞,形状不规则。分泌细胞细胞核很大,胞质内有大量的内质网和分泌颗粒。Ⅰ型分泌细胞靠近腺泡中心,PAS-苏木精染色表明Ⅰ型分泌细胞内含糖蛋白,Ⅱ型分泌细胞在腺泡外周,位于Ⅰ型分泌细胞与围细胞或结缔组织鞘之间。腔细胞分散在分泌细胞之间,包围形成胞外运输分泌物的通道。围细胞与鞘细胞接触,具有由细胞膜内陷形成的微绒毛腔,胞质内有大量的线粒体。围细胞微绒毛腔与腔细胞包围的细胞外运输通道相连,分泌细胞分泌的颗粒聚集在分泌细胞和胞外运输通道之间的连接处,并将分泌物排出至胞外运输通道。多个腺泡的胞外运输通道汇集到由单层细胞组成的丝腺导管。单层导管细胞靠近管腔外围具有规则排列的质膜内陷和大量伸长的线粒体;靠近管腔的一侧具连续的细胞膜突起,在导管壁的表皮下紧密排列。【结论】黑缘烟蟋螽丝腺分泌细胞分为Ⅰ型分泌细胞和Ⅱ型分泌细胞。分泌物质产生及分泌过程依次经过分泌细胞、腔细胞包围的胞外通道、分支导管、总导管和唾窦。其中在腺泡细胞之间,分泌物向外运输过程中,围细胞微绒毛腔的微丝束可能对分泌物的外排提供推动力。  相似文献   

18.
马氏巴蜗牛的生殖系统由十二个器官组成。作者利用组织切片技术对各个器官的组织学特点进行了研究。作者发现,马氏巴蜗牛输精管与输卵管的初始段是愈合的。阴道管壁肌肉层发达,管道柔软。指状腺腺体数目为四个。处于非生殖时期的蜗牛个体,恋矢囊内无石灰质恋矢。  相似文献   

19.
姚兵  黄威权  张崇理  王江华 《动物学报》2001,47(2):176-178,T001
用免疫组织化学ABC法,研究了颌下腺及无血清培养的颌下腺上皮细胞DHEA的定位,结果显示,大鼠颌下腺的浆液性腺泡的上皮细胞及各级导管上皮细胞均呈DHEA免疫反应阳性,无血清培养腺上皮细胞也呈DHEA免疫反应阳性,阳性物质分布于胞质,胞核呈阴性反应,此结果提示:大鼠颌下腺能自身合成DHEA,DHEA对消化功能可能具有重要的调节作用。  相似文献   

20.
This is the first ultrastructural investigation of salivary glands in the family Cheyletidae. In both sexes of Bakericheyla chanayi, paired acinous salivary glands and tubular coxal glands were shown to be united into the common podocephalic system. The secretory portion of the salivary gland includes medial and lateral lobes composed of the five and two cells, respectively, with clearly distinct ultrastructure. The cytoplasm of the cells is occupied by the secretory granules containing fine fibrous material. The fine structure of both cell types suggest a proteinaceous nature of their secretions. A single central process extending from the apical face of each secretory cell passes through the common acinar cavity to enter the conducting duct. A pair of intercalary cells at the base of the conducting duct links it with the secretory portion of the gland. Extending towards the acinar cavity, protrusions of intercalary cells alternate the apical regions of the secretory cells and form with them highly‐specialized contacts characterized by the apical network of microtubules and microfilaments. Two possible ways of secretion are suggested: 1) exocytosis into the acinar cavity and 2) direct passage via the central processes. The detection of axon profiles in the gland body suggests a neural control for the glandular cell function. In tritonymphs, neither secretion nor large lateral lobe cells were observed up to the pharate stage when the lateral lobe undergoes rapid differentiation. The arrangement of the acinous gland is compared to that of other arthropods. Its composition appears to be close to the class three of insect glands. The involvement of the lateral lobe cells in silk production is discussed. J. Morphol. 276:772–786, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号