首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34(+) CD133(+) cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg(-/-) (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34(+) CD133(+) fraction of expanded cells and that CD34(+) CD133(+) cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.  相似文献   

2.
In utero hematopoietic stem cell transplantation is a therapeutic procedure that could potentially cure many developmental diseases affecting the immune and hematopoietic systems. In most clinical and experimental settings of fetal hematopoietic transplantation the level of donor cell engraftment has been low, suggesting that even in the fetus there are significant barriers to donor cell engraftment. In postnatal hematopoietic transplantation donor cells obtained from mobilized peripheral blood engraft more rapidly than cells derived from marrow. We tested the hypothesis that use of donor hematopoietic/stem cells obtained from mobilized peripheral blood would improve engraftment and the level of chimerism after in utero transplantation in non-human primates. Despite the potential competitive advantage from the use of CD 34(+) from mobilized peripheral blood, the level of chimerism was not appreciably different from a group of animals receiving marrow-derived CD 34(+) donor cells. Based on these results, it is unlikely that this single change in cell source will influence the clinical outcome of fetal hematopoietic transplantation.  相似文献   

3.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

4.
《Cytotherapy》2014,16(9):1280-1293
Background aimsInadequate engraftment of hematopoietic stem cells (HSCs) after in utero HSC transplantation (IUHSCT) remains a major obstacle for the prenatal correction of numerous hereditary disorders. HSCs express CXCR4 receptors that allow homing and engraftment in response to stromal-derived factor 1 (SDF-1) ligand present in the bone marrow stromal niche. Plerixafor, a mobilization drug, works through the interruption of the CXCR4-SDF-1 axis.MethodsWe used the fetal sheep large-animal model to test our hypotheses that (i) by administering plerixafor in utero before performing IUHSCT to release fetal HSCs and thus vacating recipient HSC niches, (ii) by using human mesenchymal stromal/stem cells (MSCs) to immunomodulate and humanize the fetal BM niches and (iii) by increasing the CXCR4+ fraction of CD34+ HSCs, we could improve engraftment. Human cord blood-derived CD34+ cells and human bone marrow-derived MSCs were used for these studies.ResultsWhen MSCs were transplanted 1 week before CD34+ cells with plerixafor treatment, we observed 2.80% donor hematopoietic engraftment. Combination of this regimen with additional CD34+ cells at the time of MSC infusion increased engraftment levels to 8.77%. Next, increasing the fraction of CXCR4+ cells in the CD34+ population albeit transplanting at a late gestation age was not beneficial. Our results show engraftment of both lymphoid and myeloid lineages.ConclusionsPrior MSC and HSC cotransplantation followed by manipulation of the CXCR4–SDF-1 axis in IUHSCT provides an innovative conceptual approach for conferring competitive advantage to donor HSCs. Our novel approach could provide a clinically relevant approach for enhancing engraftment early in the fetus.  相似文献   

5.

Background

Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However, methods suitable for clinical practice have yet to be fully established.

Methodology/Principal Findings

In this study, we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo, and identified Garcinol, a plant-derived histone acetyltransferase (HAT) inhibitor, as a novel stimulator of hCB HSC/PC expansion. During a 7-day culture of CD34+CD38 HSCs supplemented with stem cell factor and thrombopoietin, Garcinol increased numbers of CD34+CD38 HSCs/PCs more than 4.5-fold and Isogarcinol, a derivative of Garcinol, 7.4-fold. Furthermore, during a 7-day culture of CD34+ HSCs/PCs, Garcinol expanded the number of SCID-repopulating cells (SRCs) 2.5-fold. We also demonstrated that the capacity of Garcinol and its derivatives to expand HSCs/PCs was closely correlated with their inhibitory effect on HAT. The Garcinol derivatives which expanded HSCs/PCs inhibited the HAT activity and acetylation of histones, while inactive derivatives did not.

Conclusions/Significance

Our findings identify Garcinol as the first natural product acting on HSCs/PCs and suggest the inhibition of HAT to be an alternative approach for manipulating HSCs/PCs.  相似文献   

6.
Chitteti BR  Liu Y  Srour EF 《PloS one》2011,6(3):e17498
It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34(+) cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34(+) cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34(+) cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.  相似文献   

7.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

8.
Adult stem cells are critical for maintaining cellular homeostasis throughout life, yet the effects of age on their regenerative capacity are poorly understood. All lymphoid and myeloid blood cell lineages are continuously generated from hematopoietic stem cells present in human bone marrow. With age, significant changes in the function and composition of mature blood cells are observed. In this study, we report that age-related changes also occur in the human hematopoietic stem cell compartment. We find that the proportion of multipotent CD34(+) CD38(-) cells increases in the bone marrow of elderly (>70 years) individuals. CD34(+) CD38(+) CD90(-) CD45RA(+/-) CD10(-) and CD34(+) CD33(+) myeloid progenitors persist at the same level in the bone marrow, while the frequency of early CD34(+) CD38(+) CD90(-) CD45RA(+) CD10(+) and committed CD34(+) CD19(+) B-lymphoid progenitors decreases with age. In contrast to mice models of aging, transplantation experiments with immunodeficient NOD/SCID/IL-2Rγ null (NSG) mice showed that the frequency of NSG repopulating cells does not change significantly with age, and there is a decrease in myeloid lineage reconstitution. An age-related decrease in the capacity of CD34(+) cells to generate myeloid cells was also seen in colony-forming assays in vitro. Thus, with increasing age, human hematopoietic stem/progenitor cells undergo quantitative changes as well as functional modifications.  相似文献   

9.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

10.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

11.
HIV gene therapy has the potential to offer an alternative to the use of current small-molecule antiretroviral drugs as a treatment strategy for HIV-infected individuals. Therapies designed to administer HIV-resistant stem cells to an infected patient may also provide a functional cure, as observed in a bone marrow transplant performed with hematopoietic stem cells (HSCs) homozygous for the CCR5-Δ32-bp allele. In our current studies, preclinical evaluation of a combination anti-HIV lentiviral vector was performed, in vivo, in humanized NOD-RAG1(-/-) IL2rγ(-/-) knockout mice. This combination vector, which displays strong preintegration inhibition of HIV-1 infection in vitro, contains a human/rhesus macaque TRIM5α isoform, a CCR5 short hairpin RNA (shRNA), and a TAR decoy. Multilineage hematopoiesis from anti-HIV lentiviral vector-transduced human CD34(+) HSCs was observed in the peripheral blood and in various lymphoid organs, including the thymus, spleen, and bone marrow, of engrafted mice. Anti-HIV vector-transduced CD34(+) cells displayed normal development of immune cells, including T cells, B cells, and macrophages. The anti-HIV vector-transduced cells also displayed knockdown of cell surface CCR5 due to the expression of the CCR5 shRNA. After in vivo challenge with either an R5-tropic BaL-1 or X4-tropic NL4-3 strain of HIV-1, maintenance of human CD4(+) cell levels and a selective survival advantage of anti-HIV gene-modified cells were observed in engrafted mice. The data provided from our study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validates its potential application in future clinical trials.  相似文献   

12.
In individuals with chronic myeloid leukemia (CML) treated by autologous hematopoietic stem cell (HSC) transplantation, malignant progenitors in the graft contribute to leukemic relapse, but the mechanisms of homing and engraftment of leukemic CML stem cells are unknown. Here we show that CD44 expression is increased on mouse stem-progenitor cells expressing BCR-ABL and that CD44 contributes functional E-selectin ligands. In a mouse retroviral transplantation model of CML, BCR-ABL1-transduced progenitors from CD44-mutant donors are defective in homing to recipient marrow, resulting in decreased engraftment and impaired induction of CML-like myeloproliferative disease. By contrast, CD44-deficient stem cells transduced with empty retrovirus engraft as efficiently as do wild-type HSCs. CD44 is dispensable for induction of acute B-lymphoblastic leukemia by BCR-ABL, indicating that CD44 is specifically required on leukemic cells that initiate CML. The requirement for donor CD44 is bypassed by direct intrafemoral injection of BCR-ABL1-transduced CD44-deficient stem cells or by coexpression of human CD44. Antibody to CD44 attenuates induction of CML-like leukemia in recipients. These results show that BCR-ABL-expressing leukemic stem cells depend to a greater extent on CD44 for homing and engraftment than do normal HSCs, and argue that CD44 blockade may be beneficial in autologous transplantation in CML.  相似文献   

13.
BACKGROUND: Prior studies have demonstrated that relatively immature hematopoietic stem cells, including CD34(+) CD38(-) and CD34(+) HLA-DR(-) subsets, correlate with short-term hematopoietic reconstruction (SHR) after transplantation. The aim of this study was to investigate whether these immature CD34(+) subsets also correlate with long-term hematopoietic reconstitution (LHR) in recipients of ABMT. METHODS: We examined stem cell grafts from 58 patients with B-cell lymphoma or CLL who underwent ABMT after myeloablative conditioning. We determined whether total mononuclear cell dose (MNC), colony-forming unit-granulocyte-monocyte (CFU-GM), CD34(+) cell dose and CD34(+) cell subsets (CD34(+) CD38(-) and CD34(+) HLA-DR(-) were associated with SHR and/or LHR. Time to neutrophil engraftment (TNE) and time to platelet engraftment (TPE) were used to measure SHR, while platelet counts at day 100 and 1 year post-ABMT were used as indicators for LHR. RESULTS AND DISCUSSION: CD34(+) cell dose and CD34(+) cell subsets were significantly associated with SHR. However, at day 100 and 1 year post-transplant only total CD34(+) cell dose was associated with LHR. The association of total CD34(+) cell dose with LHR persisted after adjusting for age, sex and disease. None of the CD34(+) cell subsets analyzed showed evidence of significant association with LHR.  相似文献   

14.
Efficient ex vivo transduction of hematopoietic stem cells (HSCs) is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity) and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20–24 weeks after transplantation), compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.  相似文献   

15.
16.
To investigate the behavior of hematopoietic stem cells (HSCs) in cord blood (CB), we analyzed the expression and function of TIE2, a tyrosine kinase receptor. A subpopulation of Lineage (Lin)(-/low)CD34(+) cells in CB expressed TIE2 (18.8%). Assays for long-term culture-initiating cells (LTC-IC) and cobble-stone formation revealed that Lin(-/low)CD34(+)TIE2(+) cells showed to have a capacity of primitive hematopoietic precursor cells in vitro. When Lin(-/low)CD34(+)TIE2(+) cells were cultured on the stromal cells, they transmigrated under the stromal layers and kept an immature character for a few weeks. By contrast, Lin(-/low)CD34(+)TIE2(-) cells differentiated immediately within a few weeks. Finally, we confirmed that 1x10(4)Lin(-/low)CD34(+)TIE2(+) cells were engrafted in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, while 1x10(4)Lin(-/low)CD34(+)TIE2(-) cells were not. Taken together, we conclude that TIE2 is a marker of HSCs in CB. A ligand for TIE2, Ang-1 promoted the adhesion of sorted primary Lin(-/low)CD34(+)TIE2(+) cells to fibronectin (FN), and this adhesion may play a critical role in keeping HSCs in an immature status under the stromal cells.  相似文献   

17.
Background:Parathyroid hormone (PTH) is a calcium homeostasis regulator and can affect bone marrow niche. PTH leads to the bone marrow stem cell niche expansion as well as the induction of stem cell mobilization from the bone marrow into peripheral blood. In this study, we evaluated the association between pre- transplantation serum PTH levels and the number of circulating CD34+ cells along with the platelets/white blood cells (Plt/WBC) engraftment in patients who underwent autologous Hematopoietic Stem Cell Transplantation.Methods:Subjects for the study were 100 patients who received autologous hematopoietic stem cell transplantation (auto-HSCT), retrospectively. Serum levels of PTH, calcium, phosphorus, and alkaline phosphatase were measured before mobilization. Their impacts were measured on the number of mobilized CD34+ hematopoietic stem cells, and Plt/WBC engraftment.Results:High levels of serum PTH (> 63.10 pg/mL) was significantly associated with higher number of CD34+ cells in peripheral blood after granulocyte- colony stimulating factor (G-CSF)-induced mobilization (p= 0.079*). Serum calcium at low levels were associated with higher number of circulating CD34+ cells post mobilization. Pre- transplantation serum levels of phosphorus and alkaline phosphatase on CD34+ numbers were not statistically significant. Serum Plt/WBC engraftment was not improved in presence of high levels of serum PTH.Conclusion:We suggested that serum PTH levels before transplantation could be influential in raising the number of circulating CD34+ hematopoietic stem cell after mobilization.Key Words: Auto-HSCT, CD34+ Cell, Pre- transplant PTH  相似文献   

18.
19.
Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.  相似文献   

20.
Shao L  Feng W  Lee KJ  Chen BP  Zhou D 《PloS one》2012,7(3):e33499
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 μg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34(+) hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34(+)CD38(-) cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34(+)CD38(+) cells). In contrast, mouse quiescent HSCs (Pyronin-Y(low) LKS(+) cells) and cycling HSCs (Pyronin-Y(hi) LKS(+) cells) repaired the damage more efficiently than HPCs (LKS(-) cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号