首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A V Leonidov  A K Ezhov 《Biofizika》1991,36(3):516-520
A concept of intrinsic noise of the visual system has been formulated. It has been shown that the intrinsic noise is realized in the form of the stochastic (from simple chance to complicated pithy) visual images. On the basis of the suggested concept in the limits of a normal approach, taking into account several obvious suppositions, two identical forms have been obtained of representations of probability density of own noise--the mathematical model of own noise. This model includes, as a particular case, the model of Swets, Tanner and Birdsall and has no inherent limitations.  相似文献   

2.
Single-molecule imaging analysis of chemotactic response in eukaryotic cells has revealed a stochastic nature in the input signals and the signal transduction processes. This leads to a fundamental question about the signaling processes: how does the signaling system operate under stochastic fluctuations or noise? Here, we report a stochastic model of chemotactic signaling in which noise and signal propagation along the transmembrane signaling pathway by chemoattractant receptors can be analyzed quantitatively. The results obtained from this analysis reveal that the second-messenger-production reactions by the receptors generate noisy signals that contain intrinsic noise inherently generated at this reaction and extrinsic noise propagated from the ligand-receptor binding. Such intrinsic and extrinsic noise limits the directional sensing ability of chemotactic cells, which may explain the dependence of chemotactic accuracy on chemical gradients that has been observed experimentally. Our analysis also reveals regulatory mechanisms for signal improvement in the stochastically operating signaling system by analyzing how the SNR of chemotactic signals can be improved on or deteriorated by the stochastic properties of receptors and second-messenger molecules. Theoretical consideration of noisy signal transduction by chemotactic signaling systems can further be applied to signaling systems in general.  相似文献   

3.
The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.  相似文献   

4.
The quenching of the intrinsic protein fluorescence of sarcoplasmic reticulum Ca-ATPase from the rabbit skeletal muscles by hydrophylic (NaI, CsCl) or hydrophobic (pyrene, fluorescamine) substances has been studied. CsCl (up to 1 M) has been shown not to affect the intrinsic protein fluorescence while NaI (250 mM) quenches it at 15%, pyrene (8 mkM) decreases the intrinsic fluorescence of Ca-ATPase at 35% and fluorescamine (up to 40 mkM)--at 80%. Possible mechanisms of the interaction of the quenchers with the intrinsic fluorescence of sarcoplasmic reticulum Ca-ATPase are being discussed.  相似文献   

5.
6.
7.
A recurring problem in population biology - as well as other stochastic dynamical systems in biology, the physical and social sciences - is the distinction between the ‘true’ dynamics of a system and observational noise: i.e. can we from present data reliably infer e.g. biological mechanisms, or are signals swamped by noise.Here, we approach this problem using the canonical model for simple systems that exhibit complex behaviour, the logistic map. At each time-point noise is added, which allows us to study the long-term behaviour of a system which exhibits both non-linear dynamics and intrinsic noise.We show that the interplay between deterministic non-linear dynamics and simple Gaussian noise results in a perplexingly simple system when viewed statistically.In particular we show that for the case of Gaussian noise it is possible to derive at very reliable approximations for the time until the system has reached an absorbing state. This generic model allows us, for example, to study the life-time of molecular species involved in noisy feedback loops.  相似文献   

8.
Diambra L  Malta CP 《PloS one》2012,7(3):e33912
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.  相似文献   

9.

Background  

Noise has many important roles in cellular genetic regulatory functions at the nanomolar scale. At present, no good theory exists for identifying all possible mechanisms of genetic regulatory networks to attenuate the molecular noise to achieve regulatory ability or to amplify the molecular noise to randomize outcomes to the advantage of diversity. Therefore, the noise filtering of genetic regulatory network is an important topic for gene networks under intrinsic fluctuation and extrinsic noise.  相似文献   

10.
After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, a model of enzymatic futile cycle and a genetic toggle switch. In and we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.  相似文献   

11.
Masked tonal thresholds by noise in the bottlenose dolphin have been measured as a function of angle of noise direction. Sharp directional selectivity of hearing has been discovered resulting in an abrupt decrease of noise masking with the increase of the angle of noise coming. It has been shown that narrow directional characteristics of hearing is an angle 8 degrees plus or minus 2 degrees for the level of minus 3db. It is one of the main mechanisms supplying the echolocation system of the dolphin with the high level of resistance to noise.  相似文献   

12.
Liu B  Yan S  Gao X 《PloS one》2011,6(8):e22487
The influence of noise on oscillatory motion is a subject of permanent interest, both for fundamental and practical reasons. Cells respond properly to external stimuli by using noisy systems. We have clarified the effect of intrinsic noise on the dynamics in the human cancer cells following gamma irradiation. It is shown that the large amplification and increasing mutual information with delay are due to coherence resonance. Furthermore, frequency domain analysis is used to study the mechanisms.  相似文献   

13.
14.
15.
16.
Li Q  Lang X 《Biophysical journal》2008,94(6):1983-1994
Circadian rhythmic processes, mainly regulated by gene expression at the molecular level, have inherent stochasticity. Their robustness or resistance to internal noise has been extensively investigated by most of the previous studies. This work focuses on the constructive roles of internal noise in a reduced Drosophila model, which incorporates negative and positive feedback loops, each with a time delay. It is shown that internal noise sustains reliable oscillations with periods close to 24 h in a region of parameter space, where the deterministic kinetics would evolve to a stable steady state. The amplitudes of noise-sustained oscillations are significantly affected by the variation of internal noise level, and the best performance of the oscillations could be found at an optimal noise intensity, indicating the occurrence of intrinsic coherence resonance. In the oscillatory region of the deterministic model, the coherence of noisy circadian oscillations is suppressed by internal noise, while the period remains nearly constant over a large range of noise intensity, demonstrating robustness of the Drosophila model for circadian rhythms to intrinsic noise. In addition, the effects of time delay in the positive feedback on the oscillations are also investigated. It is found that the time delay could efficiently tune the performance of the noise-sustained oscillations. These results might aid understanding of the exploitation of intracellular noise in biochemical and genetic regulatory systems.  相似文献   

17.
18.
Hui M  Li J  Wen X  Yao L  Long Z 《PloS one》2011,6(12):e29274

Background

Independent Component Analysis (ICA) has been widely applied to the analysis of fMRI data. Accurate estimation of the number of independent components of fMRI data is critical to reduce over/under fitting. Although various methods based on Information Theoretic Criteria (ITC) have been used to estimate the intrinsic dimension of fMRI data, the relative performance of different ITC in the context of the ICA model hasn''t been fully investigated, especially considering the properties of fMRI data. The present study explores and evaluates the performance of various ITC for the fMRI data with varied white noise levels, colored noise levels, temporal data sizes and spatial smoothness degrees.

Methodology

Both simulated data and real fMRI data with varied Gaussian white noise levels, first-order auto-regressive (AR(1)) noise levels, temporal data sizes and spatial smoothness degrees were carried out to deeply explore and evaluate the performance of different traditional ITC.

Principal Findings

Results indicate that the performance of ITCs depends on the noise level, temporal data size and spatial smoothness of fMRI data. 1) High white noise levels may lead to underestimation of all criteria and MDL/BIC has the severest underestimation at the higher Gaussian white noise level. 2) Colored noise may result in overestimation that can be intensified by the increase of AR(1) coefficient rather than the SD of AR(1) noise and MDL/BIC shows the least overestimation. 3) Larger temporal data size will be better for estimation for the model of white noise but tends to cause severer overestimation for the model of AR(1) noise. 4) Spatial smoothing will result in overestimation in both noise models.

Conclusions

1) None of ITC is perfect for all fMRI data due to its complicated noise structure. 2) If there is only white noise in data, AIC is preferred when the noise level is high and otherwise, Laplace approximation is a better choice. 3) When colored noise exists in data, MDL/BIC outperforms the other criteria.  相似文献   

19.
Recent advances in sleep neurobiology have allowed development of physiologically based mathematical models of sleep regulation that account for the neuronal dynamics responsible for the regulation of sleep-wake cycles and allow detailed examination of the underlying mechanisms. Neuronal systems in general, and those involved in sleep regulation in particular, are noisy and heterogeneous by their nature. It has been shown in various systems that certain levels of noise and diversity can significantly improve signal encoding. However, these phenomena, especially the effects of diversity, are rarely considered in the models of sleep regulation. The present paper is focused on a neuron-based physiologically motivated model of sleep-wake cycles that proposes a novel mechanism of the homeostatic regulation of sleep based on the dynamics of a wake-promoting neuropeptide orexin. Here this model is generalized by the introduction of intrinsic diversity and noise in the orexin-producing neurons, in order to study the effect of their presence on the sleep-wake cycle. A simple quantitative measure of the quality of a sleep-wake cycle is introduced and used to systematically study the generalized model for different levels of noise and diversity. The model is shown to exhibit a clear diversity-induced resonance: that is, the best wake-sleep cycle turns out to correspond to an intermediate level of diversity at the synapses of the orexin-producing neurons. On the other hand, only a mild evidence of stochastic resonance is found, when the level of noise is varied. These results show that disorder, especially in the form of quenched diversity, can be a key-element for an efficient or optimal functioning of the homeostatic regulation of the sleep-wake cycle. Furthermore, this study provides an example of a constructive role of diversity in a neuronal system that can be extended beyond the system studied here.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号