首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
  2021年   4篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
1.
2.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   
3.
Theoretical techniques have been developed and/or improved to predict the molecular structure of lanthanide complexes which were used to calculate their electronic properties, in particular, their electronic spectra and energy levels necessary to calculate the rates of energy transfer from the ligands to the metal ion. The molecular structure has been obtained by the SMLC/AM1 (Sparkle Model for the Calculation of Lanthanide Complexes – Austin Model 1) model where the lanthanide ion is simulated by a sparkle implemented into the AM1 Hamiltonian used to perform a HF-SCF (Hartree-Fock Self-Consistent Field) calculation. The previous implementation of the SMLC/AM1 model (sparkle/1) involving only two parameters has been generalized to be consistent with the AM1 Hamiltonian and the new model (sparkle/2) significantly improved the prediction of molecular structures of Eu(III) complexes. For the electronic spectra and energy level calculations of the lanthanide complexes the model replaces the metal ion by a point charge with the ligands held in their positions as determined by the SMLC/AM1 model, and uses a INDO/S-CI (intermediate neglect of differential overlap/spectroscopic-configuration interaction) model. A preliminary study of the solvent effects on the absorption spectra of the free ligand is also presented. For the ligand-lanthanide ion energy transfer Fermi's golden rule is used with the multipolar and exchange mechanisms being implemented and tested for several complexes. These theoretical techniques have been applied to several complexes yielding very good results when compared to experimental data as well as predictions for the molecular and electronic structures and the relative contributions of the mechanisms for the energy transfer rates. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
5.
6.
7.
To determine whether Didelphis albiventris is naturally infected with Paracoccidioides brasiliensis, 20 specimens of this mammal were studied by both direct cultivation of their viscera (spleen, liver and lungs) and by inoculation of Swiss mice by the intraperitoneal route with a suspension of fragments of these viscera. No fungal growth or structures similar to this fungus were detected. Probably D. albiventris is not frequently infected with P. brasiliensis.  相似文献   
8.

Background

Metastasis, the process whereby cancer cells spread, is in part caused by an incompletely understood interplay between cancer cells and the surrounding stroma. Gene expression studies typically analyze samples containing tumor cells and stroma. Samples with less than 50% tumor cells are generally excluded, thereby reducing the number of patients that can benefit from clinically relevant signatures.

Results

For a head-neck squamous cell carcinoma (HNSCC) primary tumor expression signature that predicts the presence of lymph node metastasis, we first show that reduced proportions of tumor cells results in decreased predictive accuracy. To determine the influence of stroma on the predictive signature and to investigate the interaction between tumor cells and the surrounding microenvironment, we used laser capture microdissection to divide the metastatic signature into six distinct components based on tumor versus stroma expression and on association with the metastatic phenotype. A strikingly skewed distribution of metastasis associated genes is revealed.

Conclusion

Dissection of predictive signatures into different components has implications for design of expression signatures and for our understanding of the metastatic process. Compared to primary tumors that have not formed metastases, primary HNSCC tumors that have metastasized are characterized by predominant down-regulation of tumor cell specific genes and exclusive up-regulation of stromal cell specific genes. The skewed distribution agrees with poor signature performance on samples that contain less than 50% tumor cells. Methods for reducing tumor composition bias that lead to greater predictive accuracy and an increase in the types of samples that can be included are presented.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号