首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioma is a common malignant tumour of the brain. In this study, we aimed to investigate diagnostic biomarkers and its role in glioma. Weighted gene co-expression network analysis (WGCNA) and Cytoscape software were used to screen the marker genes in glioma. RT-qPCR and Western blotting methods were performed to determine the expression of PAICS, ERCC1 and XPA genes in glioma tissues. Expression level of PAICS in different grades of glioma was examined by immunohistochemistry. CCK8 and Colony formation assays were used to detect cell proliferation. Cell adhesion assay was used to detect adhesion ability. Wound healing and transwell tests were used to detect cell migration ability. Flow cytometry was used to detect cell cycle and apoptosis. According to the predicted co-expression network, we identified the hub gene PAICS. Furthermore, we observed that PAICS expression level was up-regulated in glioma tissues compared with normal tissues, and the expression level was correlated with the grade of glioma. Moreover, we found PAICS can promote glioma cells proliferation and migration in vitro. Flow cytometry results showed that si-PAICS cells were stalled at the G1 phase compared with the si-NC cells and knocking down PAICS expression can increase apoptotic rate. PAICS can regulate the mRNA and protein levels of nucleotide excision repair pathway core genes ERCC1 and XPA. l -aspartic acid can affect the expression of PAICS and then inhibit glioma cell proliferation. Our results indicated that PAICS can promote glioma proliferation and migration. PAICS may act as a potential diagnostic marker and a therapeutic target for glioma.  相似文献   

2.
Malignant gliomas are frequent and the prognosis is poor. The cytokine interferon gamma (IFN-gamma) enhances several immune phenomena and may be used in immunotherapy of tumours. Therefore we investigated the influence of IFN-gamma on human cell lines T98G, U87MG, 86HG39 and 85HG66, measuring cell viability (MTT-test) and proliferation (3H-thymidine uptake). IFN-gamma markedly decreased viability and proliferation of all investigated cell lines. Expression of CD44 and adhesion to hyaluronic acid (HA) are involved in glioma invasion. Influence of IFN-gamma on these two features has also been investigated. IFN-gamma markedly decreased HA-adhesion in all three investigated cell lines, whereas CD44 expression remained uninfluenced. To summarise, IFN-gamma strongly decreased cell growth and HA-adhesion of malignant glioma cell lines in vitro. We suggest further investigations to characterise better the role of IFN-gamma as a treatment opportunity for malignant gliomas.  相似文献   

3.
4.
5.
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.  相似文献   

6.
Zhang T  Guan M  Xu C  Chen Y  Lu Y 《Life sciences》2007,81(16):1256-1263
Glioblastoma multiforme is the most common malignant brain tumor in adults, and it is among the most lethal of all cancers. Recent studies have shown that pigment epithelium-derived factor (PEDF) can induce differentiation and inhibit angiogenesis of several tumors. This study was designed to determine whether gliomas angiogenesis and tumor growth could be inhibited by PEDF. We found that PEDF down-regulated expression levels of vascular endothelial growth factor and up-regulated the expression of thrombospondin-2 and augmented apoptosis in a dose-dependent manner in both A172 and U87 glioma cells lines after 48 h of treatment. Analysis of the cell cycle showed arrest in the G1 phase and block in S phase of the cell cycle. Meanwhile PEDF induced apoptosis was associated with increases of p53 and Bax and inhibition of Bcl-2. Conditioned medium with PEDF showed a significantly reductive effect on migration in vitro accompanied with a significant reduction of matrix metalloproteinase-9 expression. PEDF suppressed glioma cell migration in vitro and tumor burden in athymic nude mice. These results demonstrate for the first time inhibitory effects of PEDF on the growth and migration of human gliomas via induction of apoptosis and blocking of migratory-related factors. PEDF activation can be a novel approach for future therapeutic purposes against gliomas.  相似文献   

7.

Background

We examined the association of tumor-derived hepatocyte growth factor (HGF) with the clinicopathological features of gliomas and investigated the effect of HGF inhibition on the biological behavior of tumor cells in vitro in order to determine whether HGF is a valuable prognostic predictor for glioma patients.

Methods

Seventy-six cases of glioma were collected. The tumor-derived HGF expression, cell proliferation index (PI) and intratumoral microvessels were evaluated by immunohistochemistry. Correlation between immunostaining and clinicopathological parameters, as well as the follow-up data of patients, was analyzed statistically. U87MG glioma cells were transfected with short interference (si)-RNA for HGF, and the cell viability, migratory ability and chemosensitivity to cisplatin were evaluated in vitro.

Results

Both high HGF expression in tumor cells (59.2%, 45/76) and high PI were significantly associated with high-grade glioma and increased microvessels in tumors (P?<?0.05). However, only histological grading (P?=?0.004) and high-expression of HGF (P?=?0.008) emerged as independent prognostic factors for the overall survival of glioma patients. The tumor-derived HGF mRNA and protein expressions were significantly decreased in vitro after transfection of HGF siRNA. HGF siRNA inhibited the cell growth and reduced cell migratory ability. Moreover, HGF siRNA transfection enhanced the chemosensitivity of U87MG glioma cells to cisplatin.

Conclusion

This study indicated that there was significant correlation among tumor cell-derived HGF, cell proliferation and microvessel proliferation in gliomas. HGF might influence tumor progression by modulating the cell growth, migration and chemoresistance to drugs. Increased expression of HGF may be a valuable predictor for prognostic evaluation of glioma patients.  相似文献   

8.
9.
Heparin affin regulatory peptide (HARP) or pleiotrophin seems to be involved in the progression of several tumors of diverse origin. In this study, we tried to determine the role of HARP in rat C6 glioma cells by using an antisense strategy for inhibition of HARP expression. Decrease of the expression of endogenous HARP in C6 cells (AS-C6 cells) significantly increased proliferation, migration, and anchorage-independent growth of cells. Implantation of AS-C6 cells onto chicken embryo chorioallantoic membranes resulted in a significant increase of tumor-induced angiogenesis compared with that induced by non-transfected or C6 cells transfected with the plasmid alone (PC-C6 cells). In the same line, conditioned medium from AS-C6 cells significantly increased endothelial cell proliferation, migration, and tube formation in vitro compared with the effect of conditioned medium from C6 or PC-C6 cells. Interestingly, vascular endothelial growth factor (VEGF) induced C6 cell proliferation and migration, and SU1496, a selective inhibitor of VEGF receptor 2 (VEGFR2), blocked increased glioma cell growth, migration, and angiogenicity observed in AS-C6 cell cultures. The above results seem to be due to a direct interaction between HARP and VEGF in the culture medium of C6 and PC-C6 cells, while AS-C6 cells secreted comparable amounts of VEGF that do not interact with HARP. Collectively, these data suggest that HARP negatively affects diverse biological activities in C6 glioma cells, mainly due to binding of HARP to VEGF, which may sequester secreted VEGF from signalling through VEGFR2.  相似文献   

10.
Glioblastoma is the most aggressive tumor in the CNS and is characterized by having a cancer stem cell (CSC) subpopulation essential for tumor survival. The purinergic system plays an important role in glioma growth, since adenosine triphosphate (ATP) can induce proliferation of glioma cells, and alteration in extracellular ATP degradation by the use of exogenous nucleotidases dramatically alters the size of gliomas in rats. The aim of this work was to characterize the effect of the purinergic system on glioma CSCs. Human U87 glioma cultures presented tumor spheres that express the markers of glioma cancer stem cells CD133, Oct-4, and Nanog. Messenger RNA of several purinergic receptors were differently expressed in spheres when compared to a cell monolayer not containing spheres. Treatment of human gliomas U87 or U343 as well as rat C6 gliomas with 100 μM of ATP reduced the number of tumor spheres when grown in neural stem cell medium supplemented with epidermal growth factor and basic fibroblast growth factor. Moreover, ATP caused a decline in the number of spheres observed in culture in a dose-dependent manner. ATP also reduces the expression of Nanog, as determined by flow cytometry, as well as CD133 and Oct-4, as analyzed by flow cytometry and RT-PCR in U87 cells. The differential expression of purinergic receptor in tumor spheres when compared to adherent cells and the effect of ATP in reducing tumor spheres suggest that the purinergic system affects CSC biology and that ATP may be a potential agonist for differentiation therapy.  相似文献   

11.
The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue.  相似文献   

12.
13.
The dysregulation of long noncoding (lncRNA) UCA1 may play an important role in tumor progression. However, the function in gliomas is unclear. Therefore, this experiment was designed to explore the pathogenesis of glioma based on lncRNA UCA1. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA UCA1, miR-135a, and HOXD9 in gliomas tissues. The effect of lncRNA UCA1 and miR-135a on tumor cell proliferation and migration invasiveness was examined by CCK-8 and transwell assays. Target gene prediction and screening, luciferase reporter assay were used to verify downstream target genes of lncRNA UCA1. Expression of E-cadherin, N-cadherin, vimentin, and HOXD9 was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in vivo experiments in nude mice. lncRNA UCA1 was highly expressed in glioma tissues and cell lines. lncRNA UCA1 expression was associated with significantly poor overall survival in gliomas. Moreover, lncRNA UCA1 significantly enhanced cell proliferation and migration, and promoted the occurrence of EMT. In addition, lncRNA UCA1 promoted the development of EMT by positively regulating HOXD9 expression as a miR-135a sponge. In vivo experiments indicated that UCA1 exerted its biological functions by modulating miR-135a and HOXD9. In conclusion, lncRNA UCA1 can induce the activation of HOXD9 by inhibiting the expression of miR-135a and promote the occurrence of EMT in glioma.  相似文献   

14.
microRNAs (miRNAs) can function as a tumor suppressor or oncogenic genes in human cancers. Alternation expression of miR-199a-5p has been revealed in several human cancers. However, its expression pattern and biological roles in glioma remain unclear. Expression levels of miR-199a-5p in glioma were evaluated at first. The effects of miR-199a-5p expression on cell proliferation, migration, and invasion were investigated using the MTT assay, wound-healing assay, and transwell invasion assay. The expression of miR-199a-5p was found to be reduced in glioma cell lines. Overexpression of miR-199a-5p inhibits glioma cell proliferation, migration, and invasion in vitro. Furthermore, the target of miR-199a-5p was predicted by TargetScan and validated by luciferase activity reporter assay. We found magnesium transporter 1 (MAGT1) was a direct target of miR-199a-5p. Overexpression of MAGT1 reversed the effects of miR-199a-5p on glioma cell behaviors. Taken together, our study revealed that miR-199a-5p and MAGT1 have the potential to be used as a biomarker for glioma.  相似文献   

15.
DPP8 belongs to the family of prolyl dipeptidases, which are capable of cleaving the peptide bond after a penultimate proline residue. Unlike DPP-IV, a drug target for type II diabetes, no information is available on the crystal structure of DPP8, the regulation of its enzymatic activity, or its substrate specificity. In this study, using analytical ultracentrifugation and native gel electrophoresis, we show that the DPP8 protein is predominantly dimeric when purified or in the cell extracts. Four conserved residues in the C-terminal loop of DPP8 (Phe(822), Val(833), Tyr(844), and His(859)), corresponding to those located at the dimer interface of DPP-IV, were individually mutated to Ala. Surprisingly, unlike DPP-IV, these single-site mutations abolished the enzymatic activity of DPP8 without disrupting its quaternary structure, indicating that dimerization itself is not sufficient for the optimal enzymatic activity of DPP8. Moreover, these mutations not only decreased k(cat), as did the corresponding DPP-IV mutations, but also dramatically increased K(m). We further show that the K(m) effect is independent of the substrate assayed. Finally, we identified the distinctive and strict substrate selectivity of DPP8 for hydrophobic or basic residues at the P2 site, which is in sharp contrast to the much less discriminative substrate specificity of DPP-IV. Our study has identified the residues absolutely required for the optimal activity of DPP8 and its unique substrate specificity. This study extends the functional importance of the C-terminal loop to the whole family of prolyl dipeptidases.  相似文献   

16.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

17.
Tumour cells often exhibit erratic cell growth, as well as decreased gap junctional intercellular communication (GJIC). C6 glioma cells are characterized by low levels of gap junction mRNA and protein, and decreased amounts of GJIC when compared with astrocytes. Previous work has shown that C6 glioma cells transfected with connexin43 (C6-Cx43) exhibit decreased proliferation in vivo and in vitro, as well as genes that are differentially expressed between these cells. In this study, RNA levels of two CCN (connective tissue growth factor [CTGF], Cyr61/Cef-10, nephroblastoma overexpressed [NOV]) gene family members are shown to be upregulated in C6-Cx43 cells: Cyr61 and Nov. Cyr61 has previously been shown to increase adhesion, migration and growth in many cell types, whereas NOV has growth suppressive capacities. Cyr61 RNA expression is shown here to respond to serum in quiescent cells in an immediate early gene fashion, independent of Cx43 expression. In contrast, Nov RNA levels remain constant, reflective of transfected Cx43 expression. Furthermore, confocal microscopy indicates that NOV colocalizes with Cx43 plaques at the cell membrane. These findings provide insight into the possible role of Nov and Cyr61 in tumour cells.  相似文献   

18.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P(1-5). S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P(1), S1P(2) and S1P(3) all contribute positively to S1P-stimulated glioma cell proliferation, with S1P(1) being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P(5) blocks glioma cell proliferation, and inhibits ERK activation. S1P(1) and S1P(3) enhance glioma cell migration and invasion. S1P(2) inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P(2) also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P(2)-stimulated glioma invasion. Thus, while S1P(2) decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.  相似文献   

19.
Elevated arginase type II (Arg-II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg-II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg-II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg-II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg-II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg-II or overexpressing native or the inactive Arg-II as well as treatment with arginase inhibitor showed that Arg-II promotes melanoma metastasis-related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg-II-promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg-II. Taken together, our study uncovers both activity-dependent and independent mechanisms of Arg-II in promoting melanoma progression. While Arg-II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis-related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H2O2-STAT3 pathway independently of the enzymatic activity. Suppressing Arg-II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma.  相似文献   

20.
目的:探讨miR-195对胶质母细胞瘤(Glioblastoma,GBM)增殖和迁移的影响,并阐明其分子调控机制。方法:采用qRT-PCR检测不同级别胶质瘤中miR-195的表达。将miR-195转染至胶质瘤U251细胞后,应用qRT-PCR验证转染效率,MTT及划痕实验检测U251细胞的增殖及迁移能力的改变,qRT-PCR及Western blot检测胰岛素样生长因子1受体(Insulin-like growth factor 1receptor, IGF-1R)的mRNA和蛋白表达;利用质粒转染过表达miR-195后,同时过表达IGF-1R,再应用MTT及划痕实验检测U251细胞的增殖及迁移能力的变化。结果:随着胶质瘤级别的增加,miR-195的表达逐渐降低,各级别胶质瘤中miR-195的表达差异有统计学意义(P0.05)。体外转染miR-195至U251细胞24、48、72 h后,转染组细胞活力和迁移能力均较对照组显著降低(P0.05),细胞中IGF-1R的mRNA和蛋白的表达也明显减少(P0.05);通过转染IGF-1R过表达质粒可显著逆转miR-195过表达对U251细胞增殖及迁移的抑制作用。结论:miR-195可能通过下调IGF-1R的表达,进而抑制胶质母细胞瘤的增殖和迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号