首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
Variations in hydraulic conductivity (LP) and the underlying anatomical and morphological changes were investigated for main root-lateral root junctions of Agave deserti and Ferocactus acanthodes under wet, dry, and rewetted soil conditions. During 21 d of drying, LP and radial conductivity (LR) increased threefold to fivefold at junctions of both species. The increase in LR was accompanied by the formation of an apoplastic pathway for radial water movement from the surface of the junction to the stele for A. deserti and by the rupture of periderm by emerging primordia of secondary lateral roots for F. acanthodes. During 7 d of rewetting, LR decreased for junctions of A. deserti, as apoplastic water movement was not apparent, but LR was unchanged for F. acanthodes. Axial conductance (Kh) decreased during drying for both species, largely because of embolism related to the degradation of unlignified cell wall areas in tracheary elements at the root junction. The resulting apertures in the cell walls of such elements would admit air bubbles at pressure differences of only 0.12-0.19 MPa. Rewetting restored Kh for both species, but not completely, due to blockage of xylem elements by tyloses. About 40% of the primary lateral roots of the monocotyledon A. deserti abscised during 21 d of drying. For the dicotyledon F. acanthodes, which can form new conduits in its secondary xylem, only 10% of the primary lateral roots abscised during 21 d of drying, consistent with the much greater frequency of lateral roots that persist during drought in the field compared with the case for the sympatric A. deserti.  相似文献   

2.
Concurrent determinations of changes in hydraulic conductivity and tissue anatomy were made for roots of Agave deserti excised during drying and following rewetting in soil. At 30 d of drought, hydraulic conductivity had declined less than twofold for older nodal roots, tenfold for young nodal roots, and more than 20-fold for lateral roots (“rain roots” occurring as branches on the nodal roots). These decreases were consistent with increases in cortical lacunae caused by cell shrinkage and collapse. Similarly, reduction of lacunae in response to rewetting after 7 d of drought corresponded to levels of recovery in hydraulic conductivity, with young nodal roots showing full recovery, lateral roots returning to only 21 % of initial conductivity, and older nodal roots changing only slightly. Increases in suberization in the exodermis, endodermis, and cortex adjacent to the endodermis in response to drying coincided with decreases in hydraulic conductivity. Measurements of axial hydraulic conductance per unit length before and after pressurization indicated that embolism caused reductions in axial conductance of 98% for lateral roots, 35% for young nodal roots, and 20% for older nodal roots at 7 d of drought. Embolism, cortical lacunae, and increasing suberization caused hydraulic conductivity to decline during drought in the three root types, thereby helping limit water loss to dry soil; the recovery in hydraulic conductivity for young nodal roots after rewetting would allow them to take up water readily once soil moisture is replenished.  相似文献   

3.
The tropical epiphytic cacti Epiphyllum phyllanthus and Rhipsalis baccifera experience extreme variations in soil moisture due to limited soil volumes and episodic rainfalls. To examine possible root rectification, whereby water uptake from a wet soil occurs readily but water loss to a dry soil is minimal, responses of root hydraulic conductivity (Lp) to soil drying and rewetting were investigated along with the underlying anatomical changes. After 30 d of soil drying, Lp decreased 50%–70% for roots of both species, primarily because increased suberization of the periderm reduced radial conductivity. Sheaths composed of soil particles, root hairs, and mucilage covered young roots and helped reduce root desiccation. Axial (xylem) conductance increased during drying due to vessel differentiation and maturation, and drought-induced embolism was relatively low. Within 4 d of rewetting, Lp for roots of both species attained predrought values; radial conductivity increased for young roots due to the growth of new branch roots initiated during drying and for older roots due to the development of radial breaks in the periderm. The decreases in Lp during drought reduced plant water loss to a dry soil, and yet maximal water uptake and transpiration occurred within a few days of rewetting, helping these epiphytes to take advantage of episodic rainfalls in a moist tropical forest.  相似文献   

4.
The significance of soil water redistribution facilitated by roots (an extension of "hydraulic lift", here termed hydraulic redistribution) was assessed for a stand of Artemisia tridentata using measurements and a simulation model. The model incorporated water movement within the soil via unsaturated flow and hydraulic redistribution and soil water loss from transpiration. The model used Buckingham-Darcy's law for unsaturated flow while hydraulic redistribution was developed as a function of the distribution of active roots, root conductance for water, and relative soil-root (rhizosphere) conductance for water. Simulations were conducted to compare model predictions with time courses of soil water potential at several depths, and to evaluate the importance of root distribution, soil hydraulic conductance and root xylem conductance on transpiration rates and the dynamics of soil water. The model was able to effectively predict soil water potential during a summer drying cycle, and the rapid redistribution of water down to 1.5 m into the soil column after rainfall events. Results of simulations indicated that hydraulic redistribution could increase whole canopy transpiration over a 100-day drying cycle. While the increase was only 3.5% over the entire 100-day period, hydraulic redistribution increased transpiration up to 20.5% for some days. The presence of high soil water content within the lower rooting zone appears to be necessary for sizeable increases in transpiration due to hydraulic redistribution. Simulation results also indicated that root distributions with roots concentrated in shallow soil layers experienced the greatest increase in transpiration due to hydraulic redistribution. This redistribution had much less effect on transpiration with more uniform root distributions, higher soil hydraulic conductivity and lower root conductivity. Simulation results indicated that redistribution of water by roots can be an important component in soil water dynamics, and the model presented here provides a useful approach to incorporating hydraulic redistribution into larger models of soil processes.  相似文献   

5.
Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.  相似文献   

6.
Rates at which water can be transported along plant roots (axial pathway) vary through time, in part depending on xylem maturation. Because of experimental constraints, the dynamics of root functional heterogeneity under field conditions remains mostly uncharted territory. Recent advances in mechanistic modelling offer opportunities to bypass such experimental limitations. This paper examines the dynamics of local variations in axial conductance of primary and first-order lateral roots of a maize crop using the architecture-based modelling approach developed by Doussan et al. (Annals of Botany: 81, 213–223, 1998). Specifically, we hypothesised that points of major resistance to long distance water transfers could arise from discrepancies between the hydraulic maturity (or water carrying capacity) of main axes and branch roots. To test this assumption, spatial distributions of root axial conductance were tested after 30, 60 and 100 days at soil depths of 10, 50 and 100 cm under a maize (Zea mays L.) crop sown at a density of 8 plants m−2. As the crop developed, the corresponding root populations encompassed ever increasing amounts of hydraulically mature first-order laterals (branch roots): after a 100-day growth period, the vast majority of laterals had reached their maximum axial conductance at all soil depths down to 100 cm. In contrast, the axial conductance of a large proportion of main axes (primary roots) remained low, even at shallow soil depths and after 100 days of growth. The imbalance between the hydraulic maturity of primary and lateral roots was most conspicuous at soil depths of 100 cm, where ~10% only of the former compared to ~80% of the latter, had reached their maximum axial conductance after a 100-day growth period.  相似文献   

7.
极端干旱环境下的胡杨木质部水力特征   总被引:2,自引:0,他引:2  
胡杨作为我国西北干旱区重要的乔木树种,研究其木质部水力特征对了解此树种适应极端干旱环境的生物学背景具有较重要的意义。本研究以塔里木河下游的胡杨成株和2年生胡杨幼苗为研究材料,对其木质部最大导水能力(ks(max))和自然栓塞程度(PLC)等木质部水力特征及其水力特征有关的木质部导管(或管饱)数量特征进行研究。结果表明,成株胡杨多年生枝条和侧根(2≤d<5 mm)木质部自然栓塞程度均较高,PLC均值高于50%,其中多年生枝条栓塞程度具有一定的日变化规律,清晨的PLC均值(58%)小于正午的(67%);河道边上成株胡杨侧根的均ks(max)和PLC均值都小于距河道200 m处的。随着土壤干旱程度的加剧,幼苗胡杨侧根的自然栓塞程度随之增加,而叶片气孔导度随之降低,土壤含水率与侧根自然栓塞程度,叶片气孔导度之间分别存在显著负相关关系(R =-0.9、R =-0.811)。在统一直径范围内(2≤d<5 mm),成株胡杨侧根均导管直径(dmean)和水力直径均大于(d95%、dh)胡杨幼苗,而导管密度胡杨幼苗高于成株胡杨;胡杨侧根木质部最大导水能力与均导管直径、水力直径之间具有显著正相关关系(R>0.9).  相似文献   

8.
Water flow through junctions in Douglas-fir roots   总被引:4,自引:0,他引:4  
Roots are important conduits for the redistribution of water within the rooting zone. Root systems are often highly branched, and water flow between regions undoubtedly involves passage through junctions between individual roots. This study considered junctions in the roots of Douglas-fir with regard to the resistances encountered by water flow through the xylem. Flow into the root branch distally along the main root encountered much greater resistance than flow into the branch and proximally along the main root (toward the plant stem). When the main root proximal to the junction was gradually shortened, the resistance to flow in the branch root and distally along the main root increased dramatically. Thus, flow in this manner appears to depend on lateral flow within the root over many centimetres proximal to the junction and not just within the direct connection at the junction. These results suggest that the hydraulic nature of junctions is an important aspect of hydraulic redistribution of water within the soil utilizing flow through roots.  相似文献   

9.
Loss of axial hydraulic conductance as a result of xylem cavitation was examined for roots of the Crassulacean acid metabolism (CAM) succulents Agave deserti and Opuntia ficus-indica. Vulnerability to cavitation was not correlated with either root size or vessel diameter. Agave deserti had a mean cavitation pressure of -0.93 ± 0.08 MPa by both an air-injection and a centrifugal method compared to -0.70 ± 0.02 MPa by the centrifugal method for O. ficus-indica, reflecting the greater tolerance of the former species to low water potentials in its native habitat. Substantial xylem cavitation would occur at a soil water potential of -0.25 MPa, resulting in a predicted 22% loss of conductance for A. deserti and 32% for O. ficus-indica. For an extended drought of 3 mo, further cavitation could cause a 69% loss of conductance for A. deserti and 62% for O. ficus-indica. A model of axial hydraulic flow based upon the cavitation response of these species predicted that water uptake rates are far below the maximum possible, owing to the high root water potentials of these desert succulents. Despite various shoot adaptations to aridity, roots of A. deserti and O. ficus-indica are highly vulnerable to cavitation, which partially limits water uptake in a wet soil but helps reduce water loss to a drying soil.  相似文献   

10.
Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2–4-mm diameter) collected at 20–30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance (gs) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20–30 cm depth above –0.5 MPa in the old-growth Douglas-fir site and –1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about –2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum gs decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.  相似文献   

11.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

12.
In the developing xylem bundles of young stems, the presence of immature living vessel elements can strongly restrict or even block axial hydraulic conductance, especially in newly matured vessels. Lateral connections between vessels may provide an alternative pathway for water movement to bypass these closed, living elements. Using the grapevine as a model system, the present study aimed to demonstrate the effects of living vessel elements on water movement patterns, and the importance of lateral flow for effective water conductivity in the developing bundles. Living vessel elements were detected using dye staining and the pattern of vessel development and maturation was then monitored. The importance of lateral flow was confirmed using several approaches: (1) capacity for lateral flow, (2) effect of increasing the distance of water transport, and (3) effect of ion concentrations. Living vessel elements were found along the developing bundles, they occupied a significant proportion of the distal and peripheral parts of the flow path, forming a substantial barrier to apoplastic water flow. Water in the developing xylem bundles could move easily from vessel to vessel and between secondary and primary xylem. Furthermore, data from increasing the transport length and altering the ion concentrations supported the critical contribution of the lateral flow to the total hydraulic conductance within the developing bundles. The hydraulic architecture of the developing xylem bundles is described. The results are discussed in terms of reliability and efficiency of water transport during shoot growth and development.  相似文献   

13.
The hydraulic properties of Pinus pinea, Pinus halepensis and Tetraclinis articulata were studied in a coastal dune area from Eastern Spain. The measured variables include vulnerability to xylem embolism (vulnerability curves), hydraulic conductivity and carbon isotopic discrimination in leaves. Leaf water potentials were also monitored in the three studied populations during an extremely dry period. Our results showed that roots had always wider vessels and higher hydraulic conductivity than branches. Roots were also more vulnerable to xylem embolism and operated closer to their hydraulic limit (i.e., with narrower safety margins). Although it was not quantified, extensive root mortality was observed in the two pines during the study period, in agreement with the high values of xylem embolism (> 75%) predicted from vulnerability curves and the water potentials measured in the field. T. articulata was much more resistant to embolism than P. pinea and P. halepensis. Since T. articulata experienced also lower water potentials, safety margins from hydraulic failure were only slightly wider in this species than in the pines. Combining species and tissues, high resistance to xylem embolism was associated with low hydraulic conductivity and with high wood density. Both relationships imply a cost of having a resistant xylem. The study outlined very different water-use strategies for T. articulata and the pines. Whereas T. articulata had a conservative strategy that relied on the low vulnerability of its conducting system to drought-induced xylem embolism, the two pines showed regulatory mechanisms at different levels (i.e., embolism, root demography) that constrained the absorption of water when it became scarce. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Desert succulents resume substantial water uptake within 1–2 d of the cessation of drought, but the changes in root structure and hydraulic conductivity underlying such recovery are largely unknown. In the monocotyledonous leaf succulent Agave deserti Engelm. substantial root mortality occurred only for lateral roots near the soil surface; nearly all main roots were alive at 180 d of drought. New main roots were initiated and grew up to 320 mm at soil water potentials lower than – 5·0 MPa, utilizing water from the shoot. The hydraulic conductivity of distal root regions decreased 62% by 45 d of drought and 70% thereafter. After 7 d of rewetting, root hydraulic conductivity was restored following 45 d of drought but not after 90 and 180 d. The production of new lateral roots and the renewed apical elongation of main roots occurred 7–11 d after rewetting following 180 d of drought. Hydraulic conductivity was higher in the distal region than at midroot and often increased again near the root base, where many endodermal cells lacked suberin lamellae. Suberization and xylem maturation were influenced by the availability of moisture, suggesting that developmental plasticity along a root allows A. deserti to capitalize on intermittent or heterogeneous supplies of water.  相似文献   

15.
The effect of secondary growth on the distribution of the axial hydraulic conductance within the Prunus root system was investigated. Secondary growth resulted in a large increase in both the number (from about 10 to several thousand) and diameter of xylem vessels (from a few micrometres to nearly 150 µm). For fine roots (<3 mm), an increase in root diameter was correlated with a slight increase in the number of xylem vessels and a large increase in their diameter. Conversely, for woody roots, an increase in root diameter was associated with a dramatic increase in the number of xylem vessels, but little or no change in vessel diameter. The theoretical axial conductivity (Kh, m4.s-1.MPa-1) of root segments was calculated with the Poiseuille-Hagen equation from measurements of vessel diameter. Kh measured using the tension-induced technique varies over several orders of magnitude (7.4᎒-11 to 5.7᎒-7 m4.s-1.MPa-1) and shows large discrepancies with theoretical calculated Kh. We concluded that root diameter is a pertinent and useful parameter to predict the axial conductance of a given root, provided the root type is known. Indeed, the relationship between measured Kh and root diameter varies according to the root type (fine or woody), due to differences in the xylem produced by secondary growth. Finally, we show how the combination of branching pattern and axial conductance may limit water flow through root systems. For Prunus, the main roots do not appear to limit water transfer; the axial conductance of the main axes is at least 10% higher than the sum of the axial conductance of the branches.  相似文献   

16.
We investigated the potential links between stomatal control of transpiration and the risk of embolism in root and shoot xylem of seedlings of three Mediterranean conifers (Cupressus sempervirens, Pinus halepensis and P. nigra) grown in a greenhouse under semi-controlled conditions. We measured the intrinsic vulnerability to embolism in roots and current year shoots by the air injection method. Root and shoot segments were subjected to increasing pressures, and the induced loss of hydraulic conductivity recorded. The three species displayed very different vulnerabilities in shoots, with P. nigra being much more vulnerable than P. halepensis and C. sempervirens. Roots were distinctly more vulnerable than shoots in C. sempervirens and P. halepensis (50% loss of conductivity induced at 3.0 MPa and 1.7 MPa higher xylem water potential in roots vs shoots). In P. nigra, no significant difference of vulnerability between shoots and roots was found. Seedlings were subjected to soil drought, and stomatal conductance, twig hydraulic conductivity and needle water potential were measured. The water potential resulting in almost complete stomatal closure (90%) was very close to the threshold water potential inducing loss of conductivity (10%) in twigs in P nigra, resulting in a very narrow safety margin between stomatal closure and embolism induction. The safety margin was larger in P. halepensis and greatest in C. sempervirens. Unexpectedly, this water potential threshold produced a 30–50% loss of conductivity in 3–5 mm diameter roots, depending on the species. The implications of this finding are discussed.  相似文献   

17.
Sycamore seedlings were grown with their root systems dividedequally between two containers. Water was withheld from onecontainer while the other container was kept well-watered. Effectsof soil drying on stomatal behaviour, shoot water status, andabscisic acid (ABA) concentration in roots, xylem sap and leaveswere evaluated. At 3 d, root ABA in the drying container increased significantly,while the root ABA in the unstressed container of the same plantsdid not differ from that of the control. The increase in rootABA was associated with the increase in xylem sap ABA and withthe decrease in stomatal conductance without any significantperturbation in shoot water status. At 7 d, despite the continuous increase in root ABA concentration,xylem sap ABA showed a marked decline when soil water contentwas depleted below 013 g g–1. This reduction in xylemsap ABA coincided with a partial recovery of stomatal conductance.The results indicate that xylem sap ABA is a function of rootABA as well as the flow rate of water from roots to shoots,and that this ABA can be a sensitive indicator to the shootof the effect of soil drying. Key words: Acer pseudoplatanus L., soil drying, stomatal behaviour, xylem sap ABA  相似文献   

18.
On the basis of recent results with young primary maize roots, a model is proposed for the movement of water across roots. It is shown how the complex, 'composite anatomical structure' of roots results in a 'composite transport' of both water and solutes. Parallel apoplastic, symplastic and transcellular pathways play an important role during the passage of water across the different tissues. These are arranged in series within the root cylinder (epidermis, exodermis, central cortex, endodermis, pericycle stelar parenchyma, and tracheary elements). The contribution of these structures to the root's overall radial hydraulic resistance is examined. It is shown that as soon as early metaxylem vessels mature, the axial (longitudinal) hydraulic resistance within the xylem is usually not rate-limiting. According to the model, there is a rapid exchange of water between parallel radial pathways because, in contrast to solutes such as nutrient ions, water permeates cell membranes readily. The roles of apoplastic barriers (Casparian bands and suberin lamellae) in the root's endo- and exodermis are discussed. The model allows for special characteristics of roots such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients indicate some apoplastic by-passes for water within the root cylinder. For a given root, the model explains the large variability in the hydraulic resistance in terms of a dependence of hydraulic conductivity on the nature and intensity of the driving forces involved to move water. By switching the apoplastic path on or off, the model allows for a regulation of water uptake according to the demands from the shoot. At high rates of transpiration, the apoplastic path will be partially used and the hydraulic resistance of the root will be low, allowing for a rapid uptake of water. On the contrary, at low rates of transpiration such as during the night or during stress conditions (drought, high salinity, nutrient deprivation), the apoplastic path will be less used and the hydraulic resistance will be high. The role of water channels (aquaporins) in the transcellular path is in the fine adjustment of water flow or in the regulation of uptake in older, suberized parts of plant roots lacking a substantial apoplastic component. The composite transport model explains how plants are designed to optimize water uptake according to demands from the shoot and how external factors may influence water passage across roots.  相似文献   

19.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   

20.
Redistribution of soil water by lateral roots mediated by stem tissues   总被引:5,自引:0,他引:5  
Evidence is increasing to suggest that a major activity of roots is to redistribute soil water. Roots in hydraulic contact with soil generally either absorb or lose water, depending on the direction of the gradient in water potential between root and soil. This leads to phenomena such as "hydraulic lift" where dry upper soil layers drive water transfer from deep moist layers to the shallow rhizosphere and, after rain or surface irrigation, an opposite, downward water transfer. These transport processes appear important in environments where rainfall is strongly seasonal (e.g. Mediterranean-type climates). Irrigation can also induce horizontal transfers of water between lateral roots. Compared with transpiration, the magnitudes, pathways, and resistances of these redistribution processes are poorly understood. Field evidence from semi-arid eucalyptus woodlands is presented to show: (i) water is rapidly exchanged among lateral roots following rain events, at rates much faster than previously described for other types of hydraulic redistribution using sap flow methods; (ii) large axial flows moving vertically up or down the stem are associated with the horizontal transfer of water between roots on opposite sides of the stem. It appears that considerable portions of the stem axis become involved in the redistribution of water between lateral roots because of partial sectoring of the xylem around the circumference of these trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号