首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cycad Zamia pumila L. was examined for differences in leaflet morphology between sun and shade plants and between males and females within a single population in northern Puerto Rico. Sun leaflets are significantly smaller than shade leaflets in length, width, and surface area; and sun leaflets have a higher length: width ratio than shade leaflets. Also, average densitythickness is greater for sun leaflets than for shade leaflets. Males and females are similar in leaflet size; but the females had a larger number of leaflets per leaf than males.  相似文献   

2.
Leaf development in the normal (lobed margin) and the solanifolia (sf/sf) mutant (entire margin) of tomato (Lycopersicon esculentum) was compared at the light and scanning electron microscope levels. The shoot apices of the mutant plants contained microbodies near the axil of the youngest leaf, which were absent in the normal plants. The structural and morphological events in the initiation of leaf primordia were similar in the two genotypes. The pattern of leaflet emergence was also similar in the two types of plants, but the timing of leaflet production was different. The first pair of leaflet primordia in the normal plants was produced on P3, whereas in the mutant it was not produced until P5. The adult leaves of sf/sf plants were larger than those of normal, and the greater leaf area in the mutant was associated with a greater adaxial epidermal cell and areole area. A continuous marginal fimbriate vein (MFV) was present along the margin of each of the normal leaflets. However, a continuous MFV was absent in the mutant leaflets. It is suggested that the absence of a continuous MFV in the mutant might alter the nutritional and hormonal supply to the leaf margin, which ultimately leads to a modified leaf, i.e., with an entire margin.  相似文献   

3.
The plant growth regulator activity of epoxiconazole, a new triazole fungicide, was investigated by time-course, dose-response and histology experiments with Galium aparine L. (cleavers). Seven days after treatment with 125g ai ha–1 epoxiconazole (field rate), plant height was reduced by 43%. After seventeen days, leaflet area was reduced by 27% but leaflet fresh weight was not significantly influenced. This was partly because leaflet thickness had increased by 20% following epoxiconazole application. Chlorophyll concentrations were also increased on a unit area basis. Examination of leaflet anatomy showed that epoxiconazole elongated palisade, spongy mesophyll and upper epidermal cells. For example, 125g ai ha–1 caused a 35% increase in the length of spongy mesophyll cells. Epoxiconazole also prevented cell separation as there were significantly more palisade and spongy mesophyll cells per unit area than in leaflets sprayed with water. Stem development was reduced and 125g ai ha–1 inhibited the elongation of pith cells in stem tissue by 53%. However, the simultaneous application of gibberellin A3 (GA3) with epoxiconazole resulted in stem elongation similar to that of control plants. These observations are consistent with the expected effects following the inhibition of cytochrome P-450 dependent enzyme activity.Abbreviations GA3 gibberellin A3 - g ai ha–1 grams of active ingredient per hectare - L ha–1 litres per hectare - PPFD photosynthetic photon flux density - RH relative humidity - SE standard error  相似文献   

4.
Water relations, leaf morphology and the chemical composition of cell walls in irrigated and unirrigated plants of three durum wheat eultivars were measured at two growth stages (booting and flowering). Plant response to water stress differed at the two stages: cell wall elasticity increased at booting and osmotic potential values decreased at flowering; this may be due to the changes in stress history, leaf development and plant growth stage between the two harvests. Leaf tissue characteristics were modified by water stress only at flowering: accumulation of fibrous constituents and hemicellulose in the cell walls, reduction of acid detergent fiber (ADF) per unit of leaf area, increase in specific leaf weight (SLW), decrease in turgid weight/dry weight ratio (TW/DW) and alteration in mesophyll cell morphology (cell area / ceil perimeter ratio) were observed.
Generally, cv. Valforte (the less drought-resistant cultivar) had the greatest mesophyll cell area and perimeter and it had greater values of neutral detergent fiber (NDF) at the booting stage than cv. Appulo. Reactivity to water stress differed in the eultivars: Valforte showed the greatest increase in hemicellulose content and decrease in cell dimensions under drought at flowering.
No significant relationships between osmotic potential and mesophyll cell characters were observed; there were no correlations among cell wall elasticity, cell morphology and the chemical components of leaf tissue. The total fiber content and the hemicellulose per unit of leaf area were correlated with the TW/DW ratio at flowering. This parameter decreased more in plants subjected to water stress owing to accumulation of hemicellulose. Correlations between leaf structural constituents and $$ suggest that the absorptive capacity of the cell wall may significally affect the osmotic volume of the cell.  相似文献   

5.
Increasing photosynthetic photon flux density (PPFD) received during development from 5.5 to 31.2 mol m-2 d-1 resulted in greater leaf and mesophyll cell surface areas in cotton (Gossypium hirsutum L.). The relationships between the amounts of these surface areas and potential CO2 assimilation by these leaves were evaluated. Leaf area (epidermal surface area of one side of a leaf), mesophyll cell surface area, and net rate of CO2 uptake (Pn) were measured from the time leaves first unfolded until P., was substantially reduced. At the higher PPFD, leaf and mesophyll surface areas increased more rapidly during expansion, and Pn per unit leaf area was greater than at the lower PPFD. Although leaves at the higher PPFD reached the maximum P., per unit mesophyll cell surface area 4 to 5 days earlier than leaves at the lower PPFD, the maxima for these P., were similar. Leaves grown at the higher PPFD had the potential to assimilate 2.2, 3.5, or 5.8 times the amount of CO2 as leaves from the lower PPFD when P., was expressed per unit mesophyll surface, per unit leaf surface, or per whole leaf, respectively. Greater and earlier development of both P., and mesophyll cell surface area at higher PPFD apparently had a compounding effect on the potential for carbon assimilation by a leaf.  相似文献   

6.
A problem often encountered when assaying mesophyll cell isolates prepared from mature soybean leaves, was that of poor reproducibility in rates of net 14CO2 photoassimilation and NO2 photoreduction. It was known that soybean source leaves repeatedly displayed their most active net CO2 photoassimilation in the period from attainment of maximal leaf area to approximately two to five days subsequent to that point. Advantage was taken of the fact that when soybean leaflets of each leaf reach their maximal area they also have reached their maximal leaf length from base to tip. This facilitates a more rapid determination of the point in time in which leaflet areas had reached Amax. Soybean plants (Glycine max cv. Williams) were propagated in the growth chamber with a 12 h light-12 h dark cycle, 25C, 65% RH, and 700 microeinsteins per meter squared per second. At 24 d post-emergence, the third leaf (numbered acropetally from the unifoliates) of each plant had just attained maximum leaflet areas (110 cm2) and lengths (13 cm). For this study, leaf mesophyll cells were enzymatically isolated, using commercially prepared pectinase, from leaflet sets of leaves selected from each of the second, third, and fourth leaf positions. Maximal rates of net 14CO2 photoassimilation (with 5 mM HCO3 ) for the second, third and fourth leaf (leaflet) isolates were, respectively, 27.0, 57.0, and 41.7 mol 14CO2 assimilated per milligram chlorophyll per hour; simultaneously maximal rates of NO inf2 sup– photoreduction (1 mM NO inf2 sup– ) were, respectively, 4.4, 8.1, and 0.0 mol NO inf2 sup– reduced per milligram chlorophyll per hour. These studies made it clear that in order repeatedly to attain reproducible maximal rates of leaf cell isolate net 14CO2 photoassimilation and NO inf2 sup– photoreduction, it always was necessary to select the newest, fully expanded leaves (e.g. leaf number 3) for cell isolation. Leaves from several plants only were pooled if they were excised from identically the same node on each of the plants.Abbreviations Amax - maximum leaflet (trifoliolate) area attained during ontogeny - CO2 - CO2 gas dissolved in solution - HCO inf3 sup– - bicarbonate - Lmax - maximum leaf blade length (midvein) attained during ontogeny - NiRase - chloroplast nitrite reductase (reduced ferredoxin) - NiPR - nitrite photoreduction - PE - post-emergence - Pn - net CO2 photoassimilation (for leaflets and mesophyll cell isolates) - PPRC - pentose phosphate reductive cycle  相似文献   

7.
A detailed quantitative analysis of the three-dimensional organization of the mesophyll was performed, and mesophyll diffusion resistance to CO2 in the leaves of Chamaerion angustifolium formed under different irradiance was calculated using an original method of stereometric cellular packing. For each type of leaves (sun and shade), we determined structural components of gas exchange: the volume of mesophyll per unit leaf area (V mes), the volume of the intercellular space in the mesophyll (V is), the area of the total mesophyll surface (S), the area of the free mesophyll surface facing the intercellular spaces (S mes), and the ratios of the total and the free mesophyll surfaces to its volume (S/V and S mes/V). As compared with sun leaves, in the shade leaves of Ch. angustifolium, S and V mes decreased twofold, tissue density was reduced twofold, and the share of the intercellular space in the mesophyll rose from 49 to 72%. In shade, the diffusion resistance of the mesophyll increased by 1.8 times because of changes in the leaf structure. At the same time, the ratio S mes/V was found to increase by 1.4 times, which facilitated the diffusion of CO2. In the shade leaves of Ch. angustifolium, the diffusion resistance of the intercellular air spaces was reduced twofold as a result of an increase in their share in the leaf mesophyll and simplification of their geometry. Thus, the method of three-dimensional reconstruction of sun and shade leaves of Ch. angustifolium showed a comprehensive rearrangement of the mesophyll spatial organization in shade and revealed the structural mechanisms of changes in the resistance to CO2 diffusion within the leaf.  相似文献   

8.
Growth at an elevated CO2 concentration resulted in an enhanced capacity for soybean (Glycine max L. Merr. cv Bragg) leaflet photosynthesis. Plants were grown from seed in outdoor controlled-environment chambers under natural solar irradiance. Photosynthetic rates, measured during the seed filling stage, were up to 150% greater with leaflets grown at 660 compared to 330 microliters of CO2 per liter when measured across a range of intercellular CO2 concentrations and irradiance. Soybean plants grown at elevated CO2 concentrations had heavier pod weights per plant, 44% heavier with 660 compared to 330 microliters of CO2 per liter grown plants, and also greater specific leaf weights. Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activity showed no response (mean activity of 96 micromoles of CO2 per square meter per second expressed on a leaflet area basis) to short-term (~1 hour) exposures to a range of CO2 concentrations (110-880 microliters per liter), nor was a response of activity (mean activity of 1.01 micromoles of CO2 per minute per milligram of protein) to growth CO2 concentration (160-990 microliters per liter) observed. The amount of rubisco protein was constant, as growth CO2 concentration was varied, and averaged 55% of the total leaflet soluble protein. Although CO2 is required for activation of rubisco, results indicated that within the range of CO2 concentrations used (110-990 microliters per liter), rubisco activity in soybean leaflets, in the light, was not regulated by CO2.  相似文献   

9.
Changes in the structural characteristics of mesophyll induced by shading were investigated in ten species of wild plants of diverse functional types. In all plant types, shading reduced leaf thickness and density by 30–50% and total surface of mesophyll, by 30–70%. The extent and mechanisms of mesophyll structural rearrangement depended on the plant functional type. In the ruderal plants, integral parameters of mesophyll, such as the surface of cells and chloroplasts and mesophyll resistance, changed threefold predominantly because of changes in the dimensions of the cells and chloroplasts. In these plants, shading reduced the volume of chloroplasts by 30%, and the chloroplast numbers per cell declined. The competitor plants showed a twofold increase in mesophyll resistance due to a decrease in the number of photosynthesizing cells per leaf area unit. Moreover, these plants maintained constant dimensions of mesophyll cells, ratios mesophyll surface/mesophyll volume and chloroplast surface/cell surface. In stress-tolerant plants, diffusion resistance of mesophyll remained the same irrespective of the growing conditions, and mesophyll rearrangement was associated with inversely proportional changes in the dimensions of the cells and cell volume per chloroplast. Noteworthy of these plants were relatively constant chloroplasts number per cell, per leaf area unit and total surface area of chloroplasts. The nature of relationship between the mesophyll diffusion resistance and structural parameters of leaf mesophyll differed in plants of diverse functional types.  相似文献   

10.
Abstract. Shading of all side leaflets of a determinate soybean cultivar during pod filling significantly increased rates of photosynthesis in the unshaded centre leaflets, compared to centre leaflets of controls. Higher rates were associated with both higher stomatal and mesophyll conductances, and were reversible within 2 days when shades were removed. These higher rates of photosynthesis were not associated with decreased percentage enhancement by low oxygen, indicating that treatment effects were probably not associated with changes in photorespiration relative to photosynthesis. Percentage enhancement did, however increase as the plants approached physiological maturity, chiefly because of a decrease in photosynthesis.
In spite of these increases in rates of photosynthesis seed weight per plant was decreased by 37% in plants with side leaflets shaded for the entire pod-filling period and by 28% in plants shaded for only the second half of the period. In plants where shades were removed during the second half of pod filling seed yield was reduced by only 19% because shade removal delayed leaf senescence. The four treatments reduced yield by different mechanisms. Plants shaded continuously during pod filling produced fewer seeds than controls, but the weight per seed was similar. When shading was applied during the second half of pod fillings seed number was unchanged but weight per seed was significantly reduced. In contrast when shades were removed for the second half of pod filling, seed number remained similar to that of continuously shaded plants, but seed weight increased.
Although all shading treatments reduced yield, the reduction was not proportional to the 63% reduction in leaf area available for photosynthesis. This was because (1) photosynthetic rates in the centre leaflet of shaded plants were higher than rates in controls, (2) stem and lower surface photosynthesis in shaded leaf-lets contributed to whole leaflet photosynthesis.  相似文献   

11.
Marrow-stem kale plants grown on plots receiving frequent additions of sulphate of ammonia showed a 40% increase in length of internode and a 25% increase in number of nodes per plant, and the leaf size was increased by between 50 and 70% over plants in plots receiving no N fertilizer. Leaves of kale continue to increase in area until they turn yellow, and the high N leaves showed a greater rate of increase in area at every stage in the life of the leaf.
Various features of leaf structure, such as stomatal index, and thickness of palisade and mesophyll, were unaffected by N treatment. The size of the epidermal cells of the leaves was very variable, and although the high N leaves showed a 12% increase in area per epidermal cell over the low N leaves, this difference is not statistically significant. The increased area of the high N leaves can therefore be attributed mainly to increased cell division during the life of the leaf. Only a very slight increase in rate of cell division is necessary to produce the observed effect.
The greater leaf area of the high N plants can be attributed mainly to increased size of individual leaves, but there was also a significantly greater number of living functional leaves per plant on the high N plants; at 23 weeks from sowing the high N plants had an average of 13.4 living leaves, while the low N plants had only 11.7 living leaves per plant.
There was an appreciable degree of N succulence in the high N kale leaves, which showed a 2% greater moisture content than the low N leaves.
A seasonal drift in epidermal cell size, palisade thickness, and total leaf thickness, is shown to be fully significant, statistically. Marked variations in stomatal frequency are barely significant at the 5% level.  相似文献   

12.
In contrast to the odd-pinnately compound leaf of the normal (+/+) tomato plant (Lycopersicon esculentum), the single-gene mutant lanceolate (La/+) generally has a simple leaf. Lanceolate plants, also, have small fruits and flowers, weak apical dominance, and exhibit variation in the position and fusion of cotyledons. Homozygous mutants (La/La) appear in 3 different phenotypes, 1 of which, narrow, has narrow simple leaves, sterile inflorescences, and extremely weak apical dominance. The other 2, modified, and reduced, lack an organized shoot. After selfing La/ + plants for 9 generations, autotetraploids were produced with the aid of colchicine. In addition, several triploid plants arose spontaneously. The study of diploid, triploid, and tetraploid material with various proportions of the La allele revealed in many characters a graded series as a function of the La dosage. With increasing La dose, there was a gradual reduction in: (1) total leaf length; (2) the number and size of primary and secondary lateral leaflets; (3) the number and size of marginal lobes of the terminal leaflet, associated with an increase in the proportional length of the terminal leaflet. Many leaves were found with the basal lobes of the terminal leaflet resembling incompletely separated lateral leaflets. The differences in leaf shape between different genotypes came about before the leaf primordium was 3 mm long. There was a progressive delay in the initiation of lateral primordia with increasing La dosage. It is proposed that the gradual changes from compound to simple leaves with increasing La dosage are produced by successively greater restrictions of meristematic activity after the terminal leaflet is formed. With increasing proportion of La alleles, the reproductive structures showed: (1) a decrease in the number of flowers per inflorescence; (2) a decrease in the length of the sepals; (3) an increase in the proportion of flowers with dialytic anthers. Dialytic anthers had narrow adaxial lobes and were frequently twisted along their main axes. The common denominator for most trends affected by the La allele seems to be a general reduction of growth, but more so in lateral than in longitudinal growth. Histological data suggest that the reduction in lateral growth is mainly brought about by a reduction of cell division in lateral meristems.  相似文献   

13.
Photosynthetic rates, chlorophyll content, and activities of several photosynthetic enzymes were determined per cell, per unit DNA, and per unit leaf area in five ploidal levels of the C4 dicot Atriplex confertifolia. Volumes of bundle sheath and mesophyll protoplasts were measured in enzymatic digestions of leaf tissue. Photosynthetic rates per cell, contents of DNA per cell, and activities of the bundle sheath enzymes ribulose 1,5-bisphosphate carboxylase (RuBPC) and NAD-malic enzyme per cell were correlated with ploidal level at 99% or 95% confidence levels, and the results suggested a near proportional relationship between gene dosage and gene products. There was also a high correlation between volume of mesophyll and bundle sheath cells and the ploidal level. Contents of DNA per cell, activity of RuBPC per cell, and volumes of cells were correlated with photosynthetic rate per cell at the 95% confidence level. The mesophyll cells did not respond to changes in ploidy like the bundle sheath cells. In the mesophyll cells the chlorophyll content per cell was constant at different ploidal levels, there was less increase in cell volume than in bundle sheath cells with an increase in ploidy, and there was not a significant correlation (at 95% level) of phosphoenolpyruvate carboxylase activity or content and pyruvate,Pi dikinase activity with increase in ploidy. The number of photosynthetic cells per unit leaf area progressively decreased with increasing ploidy from diploid to hexaploid, but thereafter remained constant in octaploid and decaploid plants. Numbers of cells per leaf area were not correlated with cell volumes. The mean photosynthetic rates per unit leaf area were lowest in the diploid, similar in 4×, 6×, and 8×, and highest in the decaploid. The photosynthetic rate per leaf area was highly correlated with the DNA content per leaf area.  相似文献   

14.
Growth and mesostructure of the photosynthetic apparatus were studied in leaves of ten Triticum L. species. Plants with the Au genome were shown to develop larger leaf assimilation areas due to expanding areas of individual leaves and an increase in the absolute growth rate. Leaf and mesophyll thickness and mesophyll cell size decreased in the G-genome species. Leaf compactness, which depended on cell size and number per unit leaf area and leaf folding, determined the specific patterns of internal leaf organization in wheat species with diverse genotypes. These patterns did not affect cell plastid-to-cytoplasm ratio as shown by the stable indices of cell surface area/cell volume, cell surface area per chloroplast, and cell volume per chloroplast. The structural indices of leaf phototrophic tissues, mesophyll density, and mesophyll CO2 conductance in alloploids, as compared to diploid species, depended on both ploidy and genome constitution.  相似文献   

15.
Photosynthetic rates and related anatomical characteristics of leaves developed at three levels of irradiance (1200, 300 and 80 umol · m–2 · s–1) were determined in the C4-like species Flaveria brownii A.M. Powell, the C3–C4-intermediate species F. linearis Lag., and the F1 hybrid between them (F. brownii × F. linearis). In the C3–C4 and F1 plants, increases in photosynthetic capacity per unit leaf area were strongly correlated with changes in mesophyll area per unit leaf area. The C4-like plant F. brownii, however, showed a much lower correlation between photosynthetic capacity and mesophyll area per unit leaf area. Plants of F. brownii developed at high irradiance showed photosynthetic rates per unit of mesophyll cell area 50% higher than those plants developed at medium irradiance. These results along with an increase in water-use efficiency are consistent with an increase of C4 photosynthesis in high-irradiance-grown F. brownii plants, whereas in the other two genotypes such plasticity seems to be absent. Photosynthetic discrimination against 13C in the three genotypes was less at high than at low irradiance, with the greatest change occurring in F. brownii. Discrimination against 13C expressed as 13C was linearly correlated (r 2 = 0.81; P<0.001) with the ratio of bundle-sheath volume to mesophyll cell area when all samples from the three genotypes were combined. This tissue ratio increased for F. brownii and the F1 hybrid as growth irradiance increased, indicating a greater tendency towards Kranz anatomy. The results indicated that F. brownii had plasticity in its C4-related anatomical and physiological characteristics as a function of growth irradiance, whereas plasticity was less evident in the F1 hybrid and absent in F. linearis.Abbreviations A leaf surface area - Ama, Amn, Alm total ma, mn or lm cell surface area - bs vascular bundle sheath - lm large spongy-mesophyll cells - ma mesophyll cells adjacent to bundle sheath - mn mesophyll cells not adjacent to bundle sheath - Pn net photosynthesis - (H, M, L) PPFD (high, medium, low) photosynthetic photon flux density - SLDW specific leaf dry wight - Vbs bs volume - V(ma + mn + bs) total photosynthetic tissue volume - 13C 13C discrimination We thank Mrs. Lisa Smith for technical assistance in light microscopy and Dr. Ned Friedman (Department of Botany, University of Georgia, Athens, GA, USA) for the use of digitizing equipment. Participation of Dr. J.L. Araus in this work was supported by a grant Beca de Especialización para Doctores y Tecnólogos en el Extranjero, from Ministerio de Educatión y Ciencia, Spain.  相似文献   

16.
Dean C  Leech RM 《Plant physiology》1982,69(4):904-910
Changes in genome expression during normal cellular and plastid development in the first leaf of young (7-day-old) wheat (Triticum aestivum var. Maris Dove) were investigated by examining homogeneous populations of leaf cells and plastids of several developmental ages present in the same leaf. The cells were characterized over a period immediately following the last cell division. All of the leaf cells had cytoplasmic contents and nuclei, and between 44% (young tissue) and 54% (older tissue) of the leaf cells were mesophyll cells. Chloroplast development was complete 36 hours after the chloroplasts had ceased dividing. Extremely large changes occurred in cellular constituents over a very short period of leaf development. Maximum rates of accumulation of ribulose bisphosphate carboxylase per mesophyll cell (80 picograms/hour), chlorophyll per mesophyll cell (9 picograms/hour), and 70S ribosomes per mesophyll cell (19 × 105/hour) were recorded.  相似文献   

17.
This study examines interrelationships between eight leaf attributes (specific leaf mass, area, dry mass, lamina thickness, mesophyll cell number per cm2, mesophyll cell volume, chloroplast volume, and number of chloroplasts per mesophyll cell) in field-grown plants of 94 species from the Eastern Pamir Mountains, at elevations between 3800 and 4750 m. Unlike most other mountain areas, the Eastern Pamirs, Karakorum system, Tadjikistan provide localities where low temperatures and radiation combine with moisture stress at high altitudes. For all the attributes measured, significant differences were found between plants with different mesophyll types. Leaves with dorsiventral palisade structure (dorsal palisade, ventral spongy mesophyll cells) had thicker leaves with larger but fewer mesophyll cells, containing more and larger chloroplasts. These differences in mesophyll type are reflected in differences in the total surface of mesophyll cells per unit leaf area ( A mes/ A ) or volume ( A mes/ V ). Plants with isopalisade leaf structure (palisade cells under both dorsal and ventral surfaces) are more commonly xerophytes and their increased values of A mes/ A and A mes/ V decrease CO2 mesophyll resistance, which is an important adaptation to drought. Path analysis shows the critical importance of mesophyll cell volume in leading to the covariance between the different leaf attributes and hence to specific leaf mass (SLM), even though mesophyll cell volume is not itself strongly correlated with SLM. This is because mesophyll cell volume increases SLM through its effects on leaf thickness and chloroplast number per cell, but decreases SLM through its negative effect on mesophyll cell density.  相似文献   

18.
Relationship of leaf anatomy with photosynthetic acclimation of Valeriana jatamansi was studied under full irradiance [FI, 1 600 mol(PPFD) m–2 s–1] and net-shade [NS, 650 mol(PPFD) m–2 s–1]. FI plants had thicker leaves with higher respiration rate (R D), nitrogen content per unit leaf area, chlorophyll a/b ratio, high leaf mass per leaf area unit (LMA), and surface area of mesophyll cell (S mes) and chloroplasts (S c) facing intercellular space than NS plants. The difference between leaf thickness of FI and NS leaves was about 28 % but difference in photon-saturated rate of photosynthesis per unit leaf area (P Nmax) was 50 %. This indicates that P Nmax can increase to a larger extent than the leaf thickness with increasing irradiance in V. jatamansi. Anatomical studies showed that the mesophyll cells of FI plants had no open spaces along the mesophyll cell walls (higher S c), but in NS plants wide open spaces along the mesophyll cell wall (lower S c) were found. Positive correlation between S c and P Nmax explained the higher P Nmax in FI plants. Increase in mesophyll thickness increased the availability of space along the mesophyll cell wall for chloroplasts (increased S c) and hence P Nmax was higher in FI plants. Thus this Himalayan species can acclimate to full sunlight by altering leaf anatomy and therefore may be cultivated in open fields.  相似文献   

19.
In situ and light-saturated net photosynthetic rates per unit leaf area were greater in cotton (Gossypium hirsutum L.) plants grown in pots in the field than in similar plants from a phytotron growth chamber. Light-saturated stomatal resistances did not differ in leaves of similar age and exposure on field and chamber plants; lower photosynthetic rates in chamber leaves were associated with greater mesophyll resistance. Differences in net photosynthetic rates were related to differences in leaf thickness. When the photosynthetic rates were expressed per unit of mesophyll volume or per unit chlorophyll differences between field and chamber plants were much less than when rates were expressed per unit leaf area. Characterization of the chloroplast lamellar proteins showed that the field leaves had smaller photosynthetic units than the chamber leaves. Since the field leaves also contained more chlorophyll per unit area, this resulted in a much larger number of photosynthetic units per unit area in the field leaves.  相似文献   

20.
The pleiofila phenotype (afaftltl double mutant) of Pisum sativum arises from two single-gene, recessive mutations known to affect the identity of leaf pinnae, afila (af), and acacia (tl). The wild-type leaf consists of proximal leaflets and distal tendrils, whereas the pleiofila leaf consists of branched pinnae terminating in small leaflets. Using morphological measurements, histology, and SEM, we characterized the variation in leaf form along the plant axis, in leaflet anatomy, and in leaf development in embryonic, early postembryonic, and late postembryonic leaves of aftl and wild-type plants. Leaves on aftl plants increase in complexity more rapidly during shoot ontogeny than those on wild-type plants. Leaflets of aftl plants have identical histology to wild-type leaflets although they have smaller and fewer cells. Pinna initiation is acropetal in early postembryonic leaves of aftl plants and in all leaves of wild-type plants, whereas in late postembryonic leaves of aftl plants pinna initiation is bidirectional. Most phenotypic differences between these genotypes can be attributed to differential timing (heterochrony) of major developmental events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号