首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We investigated whether the reductive pentose phosphate path in guard cells of Pisum sativum had the capacity to contribute significantly to the production of osmotica during stomatal opening in the light. Amounts of ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco) were determined by the [14C]carboxyarabinitol bisphosphate assay. A guard cell contained about 1.2 and a mesophyll cell about 324 picograms of the enzyme; the ratio was 1:270. The specific activities of Rubisco in guard cells and in mesophyll cells were equal; there was no indication of a specific inhibitor of Rubisco in guard cells. Rubisco activity was 115 femtomol per guard-cell protoplast and hour. This value was different from zero with a probability of 0.99. After exposure of guard-cell protoplasts to 14CO2 for 2 seconds in the light, about one-half of the radioactivity was in phosphorylated compounds and <10% in malate. Guard cells in epidermal strips produced a different labelling pattern; in the light, <10% of the label was in phosphorylated compounds and about 60% in malate. The rate of solute accumulation in intact guard cells was estimated to have been 900 femto-osmol per cell and hour. If Rubisco operated at full capacity in guard cells, and hexoses were produced as osmotica, solutes could be supplied at a rate of 19 femto-osmol per cell and hour, which would constitute 2% of the estimated requirement. The capacity of guard-cell Rubisco to meet the solute requirement for stomatal opening in leaves of Pisum sativum is insignificant.  相似文献   

2.
Dean C  Leech RM 《Plant physiology》1982,70(6):1605-1608
The quantitative relationships between ribulose bisphosphate carboxylase, nuclear ploidy, and plastid DNA content were examined in the nonisogenic polyploid series Triticum monococcum (2×), Triticum dicoccum (4×), and Triticum aestivum (6×). Ribulose bisphosphate carboxylase per mesophyll cell increased in step with each increase in nuclear ploidy so the ratios of ribulose bisphosphate carboxylase per mesophyll cell (picograms) to nuclear DNA per mesophyll cell (picograms) were almost identical in the three species. Ribulose bisphosphate carboxylase per plastid was 14.1, 14.7, and 16.8 picograms in the 2×, 4×, and 6× ploidy levels, respectively. Plastid area in these three species decreased with increasing nuclear ploidy so the concentration of ribulose bisphosphate carboxylase in the plastoids was 60% higher in the hexaploid compared to the diploid species. DNA levels per plastid were 64 and 67 femtograms for the diploid and tetraploid species, respectively, but were 40% less in the plastids of the hexaploid species. These relationships are discussed in terms of cellular and plastid control of ribulose bisphosphate carboxylase content.  相似文献   

3.
Photosynthetic rates, chlorophyll content, and activities of several photosynthetic enzymes were determined per cell, per unit DNA, and per unit leaf area in five ploidal levels of the C4 dicot Atriplex confertifolia. Volumes of bundle sheath and mesophyll protoplasts were measured in enzymatic digestions of leaf tissue. Photosynthetic rates per cell, contents of DNA per cell, and activities of the bundle sheath enzymes ribulose 1,5-bisphosphate carboxylase (RuBPC) and NAD-malic enzyme per cell were correlated with ploidal level at 99% or 95% confidence levels, and the results suggested a near proportional relationship between gene dosage and gene products. There was also a high correlation between volume of mesophyll and bundle sheath cells and the ploidal level. Contents of DNA per cell, activity of RuBPC per cell, and volumes of cells were correlated with photosynthetic rate per cell at the 95% confidence level. The mesophyll cells did not respond to changes in ploidy like the bundle sheath cells. In the mesophyll cells the chlorophyll content per cell was constant at different ploidal levels, there was less increase in cell volume than in bundle sheath cells with an increase in ploidy, and there was not a significant correlation (at 95% level) of phosphoenolpyruvate carboxylase activity or content and pyruvate,Pi dikinase activity with increase in ploidy. The number of photosynthetic cells per unit leaf area progressively decreased with increasing ploidy from diploid to hexaploid, but thereafter remained constant in octaploid and decaploid plants. Numbers of cells per leaf area were not correlated with cell volumes. The mean photosynthetic rates per unit leaf area were lowest in the diploid, similar in 4×, 6×, and 8×, and highest in the decaploid. The photosynthetic rate per leaf area was highly correlated with the DNA content per leaf area.  相似文献   

4.
Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2?3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties.  相似文献   

5.
Euglena cells, strains Z and bacillaris, were grown in the dark under various nutritional deficiencies. After 3 days of nondivision, cells were transferred to the light, and the following parameters were measured: the paramylum content at the time of illumination (zero time), the rate of paramylum consumption during the first 10 hours of greening, and the length of the lag phase of chlorophyll synthesis. Similar results were obtained with both strains and can be summarized as follows. (a) The use of various nutritional deficiencies allows the control, to a certain extent, of the amount of paramylum present at zero time. (b) The rate of paramylum consumption is proportional to the cellular paramylum content for values in excess of 50 picograms/cell. (c) The length of the lag phase increases rapidly when the cellular content of paramylum decreases below 50 picograms. This period can be greatly diminished by the addition of an exogenous organíc carbon source. (d) The amount of paramylum (rate of paramylum consumption × length of lag phase) consumed during the lag phase is around 5 to 10 picograms/cell for cells which contain less than 50 picograms of paramylum/cell. It increases when the cellular paramylum content increases, this increment being more rapid for bacillaris than for Z cells.  相似文献   

6.
The oxidation of carbohydrate by the pentose-phosphate pathway in the shoot apical meristem and developing leaf primordia of Dianthus chinensis was assessed by measuring the activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). On a kg-1 dry weight h-1 basis, activity rose from 250 mmol in the apical meristem to 550 mmol in the first two leaf primordia and then declined to 350 mmol in the sixth pair of leaf primordia, and finally to 200 mmol in leaves just emerged from the shoot bud. Measurements of activity in the sixth leaf pair from the apex showed differential distribution in leaf tissues. Epidermal and mesophyll tissue had about the same activity as whole-leaf tissue, but vascular bundles had 70% greater activity. Within the vascular tissue, activity in the phloem was twice as high as in the xylem. When activity was expressed on a per-cell basis, there was a continuous increase from 20 fmol in the apex to 2 pmol in the sixth leaf pair. Activity on a per unit cell volume basis showed that cells of the apical meristem and the epidermis, mesophyll and xylem of the sixth leaf pair had similar values, about 30 amol; only the two youngest pairs of primordia and the phloem had values two or three times this amount.  相似文献   

7.
Net electrolyte efflux from suspension-cultured tobacco cells undergoing the hypersensitive reaction to Pseudomonas syringae pv. pisi resulted from a specific efflux of K+ which was accompanied by an equimolar net influx of H+. These fluxes began 60 to 90 minutes after inoculation of tobacco cells with bacteria, reached maximum rates of 6 to 9 micromoles per gram fresh weight tobacco cells per hour within 2.5 to 3 hours, and dropped below 4 micromoles per gram per hour within 5 hours. Tobacco cells lost approximately 35% of total K+ during this period, and average cellular pH declined by approximately 0.75 pH unit. These events were accompanied by a 30% decrease in cellular ATP. K+ and H+ fluxes were inhibited by the protonophore (p-trifluoromethoxy)carbonyl cyanide phenylhydrazone and by increasing the K+ concentration of the external solution. Tobacco leaf discs inoculated with the bacterium also exhibited a specific net K+ efflux and H+ influx. These results suggest that induction of the hypersensitive reaction in tobacco proceeds through the activation of a passive plasmalemma K+/H+ exchange mechanism. It is hypothesized that activation of this exchange is a major contributing factor in hypersensitive plant cell death.  相似文献   

8.
J. V. Possingham  W. Saurer 《Planta》1969,86(2):186-194
Summary The amounts of chlorophyll and nitrogen and the numbers of cells per unit area change as the green leaves of spinach plants grow and increase in size in the light. The changes in the numbers of chloroplasts per cell were measured by a new method. A 5-fold increase in the numbers of chloroplasts per cell took place in both palisade and mesophyll cells over a growing period of 10 days during which time the area of the leaves increased from 1 to 50 cm2. Proplastids were not present in the young green leaves but electron-microscope and phase-contrast observations showed the presence of grana-containing chloroplasts, many of which appeared to be undergoing division by constriction. It is suggested that the large increase in chloroplast numbers as leaf cells grow and expand in the light is from the division of differentiated chloroplasts containing grana.  相似文献   

9.
The net rate of CO2 uptake for leaves of Gossypium hirsutum L. was reduced when the plants were grown at low concentrations of NO3-, PO42-, or K+. The water vapor conductance was relatively constant for all nutrient levels, indicating little effect on stomatal response. Although leaves under nutrient stress tended to be lower in chlorophyll and thinner, the ratio of mesophyll surface area to leaf area did not change appreciably. Thus, the reduction in CO2 uptake rate at low nutrient levels was due to a decrease in the CO2 conductance expressed per unit mesophyll cell wall area (gcellCO2). The use of gcellCO2 and nutrient levels expressed per unit of mesophyll cell wall provides a new means of assessing nutrient effects on CO2 uptake of leaves.  相似文献   

10.
The structure of photosynthetic elements was investigated in leaves of 42 boreal plant species featuring different degrees of submergence (helophytes, neustophytes, and hydatophytes). The mesophyll structure types were identified for all these species. Chlorenchyma tissues and phototrophic cells were quantitatively described by such characteristics as the sizes of cells and chloroplasts in the mesophyll and epidermis, the abundance of cells and chloroplasts in these tissues, the total surface area of cells and chloroplasts per unit leaf area, the number of plastids per cell, etc. The hydrophytes typically had thick leaves (200–350 m) with a well-developed aerenchyma; their specific density per unit area (100–200 mg/dm2) was lower than in terrestrial plants. Mesophyll cells in aquatic plants occupied a larger volume (5–20 × 103m3) than epidermal cells (1–15 × 103m3). The number of mesophyll cells per unit leaf area was nearly 1.5 times higher than that of epidermal cells. Chloroplasts were present in the epidermis of almost all species, including emergent leaves, but the ratio of the chloroplast total number to the number of all plastids varied depending on the degree of leaf submergence. The total number of plastids per unit leaf area (2–6 × 106/cm2) and the surface of chloroplasts per unit leaf area (2–6 cm2/cm2) were lower in hydrophytes than in terrestrial plants from climatically similar habitats. The functional relations between mesophyll parameters were similar for hydrophytes and terrestrial plants (a positive correlation between the leaf weight per unit area, leaf thickness, and the number of mesophyll cells per unit leaf area), although no correlation was found in hydrophytes between the volume of mesophyll cells and the leaf thickness. Phototrophic tissues in aquatic plants contributed a larger fraction to the leaf weight than in terrestrial plants, because the mechanical tissues were less developed in hydrophytes. The CO2assimilation rates by leaves were lower in hydrophytes than in terrestrial plants, because the total surface area of chloroplasts per unit leaf area is comparatively small in hydrophytes, which reduces the conductivity for carbon dioxide diffusion towards the carboxylation sites.  相似文献   

11.
Increasing photosynthetic photon flux density (PPFD) received during development from 5.5 to 31.2 mol m-2 d-1 resulted in greater leaf and mesophyll cell surface areas in cotton (Gossypium hirsutum L.). The relationships between the amounts of these surface areas and potential CO2 assimilation by these leaves were evaluated. Leaf area (epidermal surface area of one side of a leaf), mesophyll cell surface area, and net rate of CO2 uptake (Pn) were measured from the time leaves first unfolded until P., was substantially reduced. At the higher PPFD, leaf and mesophyll surface areas increased more rapidly during expansion, and Pn per unit leaf area was greater than at the lower PPFD. Although leaves at the higher PPFD reached the maximum P., per unit mesophyll cell surface area 4 to 5 days earlier than leaves at the lower PPFD, the maxima for these P., were similar. Leaves grown at the higher PPFD had the potential to assimilate 2.2, 3.5, or 5.8 times the amount of CO2 as leaves from the lower PPFD when P., was expressed per unit mesophyll surface, per unit leaf surface, or per whole leaf, respectively. Greater and earlier development of both P., and mesophyll cell surface area at higher PPFD apparently had a compounding effect on the potential for carbon assimilation by a leaf.  相似文献   

12.
Isolation of mesophyll protoplasts from mature leaves of soybeans   总被引:3,自引:2,他引:1       下载免费PDF全文
Lin W 《Plant physiology》1983,73(4):1067-1069
A procedure based on a combined cellulase-Pectolyase Y-23 enzyme digestion and metrizamide-sorbitol gradient purification protocol was developed for isolating mesophyll protoplasts from mature leaves of soybean (Glycine max L. Merr.). Based on chlorophyll content, this procedure results in a 10 to 15% protoplast yield from fully expanded mature leaves and a 20 to 30% yield from young (expanding) leaves within 3 hours. Isolated protoplasts displayed high rates of HCO3-dependent photosynthesis; greater than 75 micromoles O2 evolved per milligram chlorophyll per hour at 25°C. This photosynthetic rate is comparable to that of mesophyll cells isolated mechanically from the same leaves.  相似文献   

13.
The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.

Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo35S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major 35S-labeled proteins. The major incorporation of 35S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major 35S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the 35S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.

  相似文献   

14.
Maksymowych, Roman. (Villanova U., Villanova, Pa.) Cell division and cell elongation in leaf development of Xanthium pensylvanicum. Amer. Jour. Bot. 50(9) : 891–901. Illus. 1963.—Cell division in different parts of the lamina and cell enlargement of the upper epidermis and palisade mesophyll were studied in vertical and horizontal planes during the entire period of growth. The leaf plastochron index (L.P.I.) was used for designation of developmental stages of the leaf. From cell-length data and measurements of cell area the absolute rates of elongation (dX/dpl) and relative rates of elongation (dlnX/dpl) were calculated. The increase in number of cells in the early plastochrons is exponential and cell division stops at about L.P.I. 3.0. Divisions cease first at the tip and last in the basal lobes of the leaf, indicating a basipetal trend of this process. Cells are elongating while division is in progress, though this elongation proceeds at low rates and for a limited time. Palisade cells elongate in the vertical plane at higher rates and at least 1 plastochron sooner than the upper epidermis. The latter cells, however, expand in area with higher absolute and relative rates, and about 2 plastochrons in advance of the palisade mesophyll. The rates are not constant during the whole period of development but are represented by the bell-shaped curves with maximal peaks around L.P.I. 3.0 for the middle portion of the lamina. The increase in volume of the 2 types of cells stops around L.P.I. 5.0, or shortly after. In addition to unequal durations of cellular enlargement, both tissues expand at differential rates, which for the upper epidermis is high in the horizontal plane but low in the vertical plane, while the opposite is true for the palisade mesophyll. It is suggested that palisades and spongy mesophyll are separated and intercellular spaces formed during the course of development because of the greater rate of expansion in area of the upper epidermis.  相似文献   

15.
3H-thymidine was incorporated into leaf tissue of Xanthium pennsylvanicum during the stage of active cell division, during cellular differentiation, and into mature cells. Incorporation into nuclear DNA was high in the early stages of development. No nuclear incorporation was found after cessation of cell division. However, significant incorporation could be demonstrated in cytoplasm of differentiating and mature cells. Depending upon the time of growth in the radioisotope and the time of growth after treatment, 3H-thymidine, or its metabolized fraction, was incorporated into the secondary wall depositions of epidermal cells, mesophyll parenchyma cells, xylem cells, and chloroplasts. Autoradiographic technique and liquid scintillation spectrometry were used in these studies. The significance of 3H-thymidine incorporation into various organelles is discussed in relation to cell metabolism and its regulation during leaf development.  相似文献   

16.
Robert Turgeon 《Planta》1984,161(2):120-128
Mature leaves import limited amounts of nutrient when darkened for prolonged periods. We tested the hypothesis that import is restricted by the apoplast-phloem loading mechanism, ie., as sucrose exits the phloem of minor veins it is retrieved by the same tissue, thus depriving the mesophyll of nutrient. When single, attached, mature leaves of tobacco (Nicotiana tabacum L.) plants were darkened, starch disappeared from the mesophyll cells, indicating that the supply of solute to the mesophyll was limited. Starch was synthesized in mesophyll cells of darkened tissue when sucrose was applied to the apoplast at 0.1–0.3 mM concentration. Efflux from minor veins was studied by incubating leaf discs on [14C]sucrose to load the minor veins and then measuring subsequent 14C release. Efflux was rapid for the first hour and continued at a gradually decreasing rate for over 13 h. Net efflux increased when loading was inhibited by p-chloromercuribenzene-sulfonic acid, anoxia, isotope-trapping, or reduction of the pH gradient. Neither light nor potassium had a significant effect on the rate of labeled sucrose release. The site of labeled sucrose release was investigated by measuring efflux from discs in which sucrose had previously been loaded preferentially by either the minor veins or mesophyll cells. Efflux occurred primarily from minor veins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - Mops 3(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SE-CC sieve element-companion cell complex  相似文献   

17.
Temporal and spatial patterns of palisade mesophyll cell expansion in Zinnia elegans were characterized as a basis for developing a suspension culture model for mesophyll cell expansion. Our objectives were to 1) identify the leaf regions from which cells in various stages of expansion could be selectively isolated for culture, and 2) develop a basis for comparison of rate and extent of mesophyll cell expansion in culture with that in the leaf. Palisade mesophyll cells were isolated from expanding leaves by gentle physical maceration without the use of enzymes. Isolated cells from leaves in different stages of expansion were then measured by computer image analysis. Analysis of size frequency distributions showed that unexpanded cells can be isolated from the entire blade of small leaves or the basal regions of partially expanded leaves. Fully expanded cells can be obtained from the apical and middle regions of partially expanded leaves. Within the leaf, Zinnia mesophyll cells expanded from about 400 μm2 to about 2.300 μm2 at an estimated rate of 160 μm2 d-1. The percent increase in cell length exceeded the percent increase in cell width. Expansion of mesophyll cells continued for 6–8 d after epidermal expansion ceased. This difference in the timing of cell expansion in epidermal and mesophyll cells indicates that different regulatory factors may be operating in these adjacent tissues and underscores the importance of investigating the regulation of mesophyll cell expansion at the cellular level.  相似文献   

18.
Transgenic tobacco plants were generated carrying a rice homeobox gene,OSH1, controlled by the promoter of a gene encoding a tobacco pathogenesis-related protein (PR1a). These lines were morphologically abnormal, with wrinkled and/or lobed leaves. Histological analysis of shoot apex primordia indicated arrest of lateral leaf blade expansion, often resulting in asymmetric and anisotropic growth of leaf blades. Other notable abnormalities included abnormal or arrested development of leaf lateral veins. Interestingly,OSH1 expression was undetectable in mature leaves with the aberrant morphological features. Thus,OSH1 expression in mature leaves is not necessary for abnormal leaf development. Northern blot and in situ hybridization analyses indicate thatPR1a-OSH1 is expressed only in the shoot apical meristem and in very young leaf primordia. Therefore, the aberrant morphological features are an indirect consequence of ectopicOSH1 gene expression. The only abnormality observed in tissues expressing the transgene was periclinal (rather than anticlinal) division in mesophyll cells during leaf blade initiation. This generates thicker leaf blades and disrupts the mesophyll cell layers, from which vascular tissues differentiate. TheOSH1 product appears to affect the mechanism controlling the orientation of the plane of cell division, resulting in abnormal periclinal division of mesophyll cell, which in turn results in the gross morphological abnormalities observed in the transgenic lines.  相似文献   

19.
Two genomic variants of a chickpea (Cicer arietinum L.) parental line have been developed which exhibit gigas characters. The two genotypes were the result of a single-gene mutation (gigas) and induced tetraploidy of a single parental line. The two genotypes plus parental strain were investigated to determine the similarity-of-effect of polyploidy and this single-gene mutation on leaf anatomy and morphology. Leaves consisted of two rows of alternatively arranged leaflets. Both the tetraploid and parental lines had the same mean number of leaflets per leaf while the gigas plants had fewer, but mean total leaf surface area was greater in the gigas plants. Quantitative comparison of mesophyll and vascular tissue and air space volume density (Vv) showed that leaves of the tetraploid plants had the greatest mesophyll cell density (Vvm) and least air space density. Mesophyll cell density was equal in the parental and single-gene mutant while parental leaves had the greatest vascular tissue density. The greater mesophyll cell density values of the polyploid were due to larger mean mesophyll cell size, not to greater cell numbers per unit area. Leaf models based on tissue density and leaflet size showed tetraploid plants had the greatest productivity potential per unit of leaflet surface area. However, if models were based on a whole leaf, gigas plants had the greatest productivity potential since they had larger total leaf area. The effectiveness of using structural models to predict physiological potential in plant tissues will be tested in future studies.  相似文献   

20.
Mesophyll cells and bundle sheath strands were isolated from Cyperus rotundus L. leaf sections infiltrated with a mixture of cellulase and pectinase followed by a gentle mortar and pestle grind. The leaf suspension was filtered through a filter assembly and mesophyll cells and bundle sheath strands were collected on 20-μm and 80-μm nylon nets, respectively. For the isolation of leaf epidermal strips longer leaf cross sections were incubated with the enzymes and gently ground as above. Loosely attached epidermal strips were peeled off with forceps. The upper epidermis, which lacks stomata, could be clearly distinguished from the lower epidermis which contains stomata. Microscopic evidence for identification and assessment of purity is provided for each isolated tissue.Enzymes related to the C4-dicarboxylic acid cycle such as phosphoenolpyruvate carboxylase, malate dehydrogenase (NADP+), pyruvate, Pi dikinase were found to be localized, ≥98%, in mesophyll cells. Enzymes related to operating the reductive pentose phosphate cycle such as RuDP carboxylase, phosphoribulose kinase, and malic enzyme are distributed, ≥99%, in bundle sheath strands. Other photosynthetic enzymes such as aspartate aminotransferase, pyrophosphatase, adenylate kinase, and glyceraldehyde 3-P dehydrogenase (NADP+) are quite active in both mesophyll and bundle sheath tissues.Enzymes involved in photorespiration such as RuDP oxygenase, catalase, glycolate oxidase, hydroxypyruvate reductase (NAD+), and phosphoglycolate phosphatase are preferentially localized, ≥84%, in bundle sheath strands.Nitrate and nitrite reductase can be found only in mesophyll cells, while glutamate dehydrogenase is present, ≥96%, in bundle sheath strands.Starch- and sucrose-synthesizing enzymes are about equally distributed between the mesophyll and bundle sheath tissues, except that the less active phosphorylase was found mainly in bundle sheath strands. Fructose-1,6-diP aldolase, which is a key enzyme in photosynthesis and glycolysis leading to sucrose and starch synthesis, is localized, ≥90%, in bundle sheath strands. The glycolytic enzymes, phosphoglyceromutase and enolase, have the highest activity in mesophyll cells, while the mitochondrial enzyme, cytochrome c oxidase, is more active in bundle sheath strands.The distribution of total nutsedge leaf chlorophyll, protein, and PEP carboxylase activity, using the resolved leaf components, is presented. 14CO2 Fixation experiments with the intact nutsedge leaves and isolated mesophyll and bundle sheath tissues show that complete C4 photosynthesis is compartmentalized into mesophyll CO2 fixation via PEP carboxylase and bundle sheath CO2 fixation via RuDP carboxylase. These results were used to support the proposed pathway of carbon assimilation in C4-dicarboxylic acid photosynthesis and to discuss the individual metabolic characteristics of intact mesophyll cells, bundle sheath cells, and epidermal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号