首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
A tomato (Lycopersicon esculentum Mill.) monogenic semidominant mutation, stamenless (sl), which results in homeotic conversions in two adjacent floral whorls, was studied. When grown at standard temperature, flowers of sl/sl plants showed sepaloid petals in the second whorl and strong transformation of stamens to carpels in whorl three. These transformed carpels were fused with each other and with the genuine carpels in the fourth whorl to form a unique gynoecium. The mutation is semidominant since heterozygous plants showed a phenotype intermediate between that of the wild type (WT) and that of homozygous mutant plants, with nearly WT petals but with feminized stamens bearing naked ovules on the base of their adaxial face. The initiation and position of organ primordia in sl/sl flowers were not altered when compared with WT primordia although development of organ primordia in the second and third whorls deviated from WT at an early stage as observed by scanning electron microscopy. The mutant phenotype is temperature sensitive and when sl/sl plants were cultured at low temperature, the morphology of some flowers resembled that of the WT. This reversion of the mutant phenotype is also induced by treatment of young sl/sl plants with gibberellic acid, providing evidence that gibberellin synthesis or sensitivity could mediate the effect of low temperature on the mutant phenotype. Southern blot analyses using a Deficiens-homologous gene from Solanum tuberosum as a probe showed a restriction-fragment-length polymorphism (RFLP) linked to the sl mutation. This result indicates that the mutation affects a Deficiens-like gene that controls the identity of petals and stamens. Received: 10 December 1998 / Accepted: 29 March 1999  相似文献   

2.
Chen JH  Pang JL  Wang LL  Luo YH  Li X  Cao XL  Lin K  Ma W  Hu XH  Luo D 《Cell research》2006,16(5):499-506
Although much progress has been made in understanding how floral organ identity is determined during the floral development, less is known about how floral organ is elaborated in the late floral developmental stages. Here we describe a novel floral mutant, wrinkled petals and stamens1 (wps1), which shows defects in the development of petals and stamens. Genetic analysis indicates that wpsl mutant is corresponding to a single recessive locus at the long arm of chromosome 3. The early development of floral organs in wpsl mutant is similar to that in wild type, and the malfunction of the mutant commences in late developmental stages, displaying a defect on the appearance of petals and stamens. In the mature flower, petals and stamen filaments in the mutant are wrinkled or folded, and the cellular morphology under L1 layer of petals and stamen filaments is abnormal. It is found that the expression patterns of floral organ identity genes are not affected in wpsl mutants compared with that of wild type, consistent with the unaltered development of all floral organs. Furthermore, the identities of epidermal cells in different type of petals are maintained. The histological analysis shows that in wpsl flowers all petals are irregularly folded, and there are knotted structures in the petals, while the shape and arrangement of inner cells are malformed and unorganized. Based on these results, we propose that Wpsl acts downstream to the class B floral organ identity genes, and functions to modulate the cellular differentiation during the late flower developmental stages.  相似文献   

3.
This work provides new evidence of the complex genetic regulation necessary to accomplish flower development in legumes. Using scanning electron microscopy (SEM) analysis, we have characterized the early developmental events of the wild type Medicago truncatula flower and selected morphological characters as markers to break it down into eight different developmental stages. The order of floral organ initiation in M. truncatula and pea (Pisum sativum L.), in contrast to Arabidopsis and Antirrhinum, is unidirectional in all whorls starting from the abaxial position of the flower with a high degree of overlap. Another main difference is the existence of four common primordia from which petals and stamens differentiate. The formation of common primordia, as opposed to discrete petal and stamen primordia, has been described in many legume and non-legume plants. The main differences between pea and M. truncatula floral ontogeny are in carpel and fruit development. We also used these morphological markers as tools to characterize early alterations in the flower development of a male-sterile M. truncatula floral homeotic mutant named mtapetala. This mutant displays a phenotype resembling those of weak class B mutants with homeotic conversions of floral organ whorls 2 and 3 into sepaloid and carpelloid structures, respectively. Ontogeny studies of the mtapetala mutant flowers showed similarities with the effects of previously described loss-of-B-function mutations. Differences between ontogeny of wild type and mtapetala flowers could not be detected during the first stages (1-5) of flower development. In late stage 5, abnormal-shaped petals with acute lobes and trichomes as well as abnormal-shaped stamens were visible in whorls 2 and 3. At stage 6, the morphology of petals began to change, developing enlarged sepaloid structures bearing trichomes and first the antesepalous stamens and then the antepetalous stamens began to differentiate carpelloid anthers from filaments. Third whorl organs presented different degrees of carpelloidy. The present study should provide tools for the characterization and comparative analyses of new Medicago floral homeotic mutants and could be useful in elucidating how floral organ identity functions work in legumes.  相似文献   

4.
In order to improve our understanding of floral size control we characterised three mutants of Antirrhinum majus with different macroscopic floral phenotypes. The recessive mutant compacta ?hnlich has smaller flowers affected mainly in petal lobe expansion, the dominant mutant Grandiflora has overall larger organs, whilst the semidominant mutation Nitida exhibits smaller flowers in a dose-dependent manner. We developed a cell map in order to establish the cellular phenotypes of the mutants. Changes in organ size were both organ- and region-specific. Nitida and compacta ?hnlich affected cell expansion in proximal and distal petal regions, respectively, suggesting differential regulation between petal lobe regions. Although petal size was smaller in compacta ?hnlich than in wild type, conical cells were significantly bigger, suggesting a compensation mechanism involved in petal development. Grandiflora had larger cells in petals and increased cell division in stamens and styles, suggesting a relationship between genes controlling organ size and organ identity. The level of ploidy in petals of Grandiflora and coan was found to be equivalent to wild type petals and leaves, ruling out an excess of growth via endoreduplication. We discuss our results in terms of current models about control of lateral organ size.  相似文献   

5.
Lardizabalaceae, one of seven families of Ranunculales, represent a monophyletic group. The family has functionally unisexual flowers with the organs in trimerous whorls, petaloid sepals and sometimes nectariferous petals. Among Ranunculales, Lardizabalaceae share several floral characters and climbing habit with Menispermaceae, but molecular analyses indicate that Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Morphological and ontogenetic studies of flowers have proved to be a good complement to molecular data in clarifying relationships. Floral organogenesis has been studied in very few species of the family. This study investigates the comparative floral development of three species from three genera (Decaisnea, Akebia and Holboellia) of Lardizabalaceae using scanning electron microscopy. Flowers have a whorled phyllotaxis. Within each whorl, the organs are initiated either simultaneously or in a rapid spiral sequence. In Akebia, six sepals are initiated, but one to three sepals of the second whorl do not further develop. The presence of three sepals in Akebia is thus a developmentally secondary simplification. The petals (if present) are retarded in early developmental stages; stamens and petals are different in shape from the beginning of development. The retarded petals may not be derived from staminodes in Lardizabalaceae. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 171–184.  相似文献   

6.
PETAL LOSS is a new class of flower development gene whose mutant phenotype is confined mostly to the second whorl. Two properties are disrupted, organ initiation and organ orientation. Initiation is frequently blocked, especially in later-formed flowers, or variably delayed. The few petals that arise occupy a wider zone of the flower primordium than normal. Also, a minority of petals are trumpet-shaped, thread-like or stamenoid. Studies of ptl combined with homeotic mutants have revealed that the mutant effect is specific to the second whorl, not to organs with a petal identity. We propose that the PTL gene normally promotes the induction of organ primordia in specific regions of the second floral whorl. In ptl mutants, these regions are enlarged and organ induction is variably reduced, often falling below a threshold. A dominant genetic modifier of the ptl mutant phenotype was found in the Landsberg erecta strain that significantly boosts the mean number of petals per flower, perhaps by reinforcing induction so that the threshold is now more often reached. The second major disruption in ptl mutants relates to the orientation adopted by second whorl organs from early in their development. In single mutants the full range of orientations is seen, but when B function (controlling organ identity) is also removed, most second whorl organs now face outwards rather than inwards. Orientation is unaffected in B function single mutants. Thus petals apparently perceive their orientation within the flower primordium by a mechanism requiring PTL function supported redundantly by that of B class genes.  相似文献   

7.
8.
Floral organ identity B class genes are generally recognized as being required for development of petals and stamens in angiosperm flowers. Spinach flowers are distinguished in their complete absence of petals in both sexes, and the absence of a developed stamen whorl in female flowers. As such, we hypothesized that differential expression of B class floral identity genes is integral to the sexual dimorphism in spinach flowers. We isolated two spinach orthologs of Arabidopsis B class genes by 3 and 5 RACE. Homology assignments were tested by comparisons of percent amino acid identities, searches for diagnostic consensus amino acid residues, conserved motifs, and phylogenetic groupings. In situ hybridization studies demonstrate that both spinach B class genes are expressed throughout the male floral meristem in early stages, and continue to be expressed in sepal primordia in reduced amounts at later stages of development. They are also highly expressed in the third whorl primordia when they arise and continue to be expressed in these tissues through the development of mature anthers. In contrast, neither gene can be detected in any stage in female flowers by in situ analyses, although northern blot experiments indicate low levels of SpAP3 within the inflorescence. The early, strong expressions of both B class floral identity genes in male floral primordia and their absence in female flowers demonstrate that B class gene expression precedes the origination of third whorl primordia (stamen) in males and is associated with the establishment of sexual floral dimorphism as it initiates in the first (sepal) whorl. These observations suggest that regulation of B class floral identity genes has a role in the development of sexual dimorphism and dioecy in spinach rather than being a secondary result of organ abortion.Electronic Supplementary Material Supplementary material is available for this article at Edited by G. Jürgens  相似文献   

9.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

10.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

11.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

12.
Webster MA  Gilmartin PA 《Planta》2003,216(6):903-917
Primula flowers are heteromorphic with individual plants producing either pin-form or thrum-form flowers. We have used scanning electron microscopy to observe early development of wild-type flowers of primrose (Primula vulgaris), cowslip (P. veris), and the polyanthus hybrid (P. x tommasinii x P. vulgaris). Floral ontogeny in Primula is different from that observed in the well-studied models Antirrhinum majus and Arabidopsis thaliana and our studies reveal morphological landmark events that define the sequence of early floral development in Primula into specific stages. Pin-form and thrum-form flowers are indistinguishable during early development with differentiation of the two floral morphs occurring beyond the differentiation of floral organs. Early ontogeny of flowers with homeotic mutant phenotypes was also studied to determine the timing of developmental reprogramming in these mutants. Phenotypes studied included Hose in Hose and Jack in the Green that develop petaloid sepals and leafy sepals, respectively, and Jackanapes plants that carry both these dominant mutations. Recessive double and semi- double flowers that produce additional whorls of petals and/or stamens in place of carpels were also studied. We describe a previously undocumented recessive Primula mutant phenotype, sepaloid, that produces sepals in place of petals and stamens, and a new non-homeotic, dominant mutant phenotype Split Perianth, in which sepals and petals fail to fuse to form the typical calyx and corolla structures. The molecular basis of these mutant phenotypes in relation to the ABC model is discussed.  相似文献   

13.
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.   总被引:25,自引:0,他引:25  
We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.  相似文献   

14.
We describe a novel mutant of Arabidopsis, Flo10, which is the result of a recessive allele, flo10, in the nuclear gene FLO10. The first three organ whorls (sepals, petals, and stamens) of Flo10 flowers are normal, but the fourth, gynoecial whorl is replaced by two to eight stamens or stamen-carpel intermediate organs. Studies of ontogeny suggest that the position of the first six of these fourth-whorl organs often resembles that of the wild-type third-whorl organs. To determine the interaction of the FLO10 gene with the floral organ homeotic genes APETALA2 (AP2), PISTILLATA (PI), AP3, and AGAMOUS (AG), we generated lines homozygous for flo10 and heterozygous or homozygous for a recessive allele of the homeotic genes. On the basis of our data, we suggest that FLO10 functions to prevent the expression of the AP3/PI developmental pathway in the gynoecial (fourth) whorl.  相似文献   

15.
The floral organs of Sinofranchetia chinensis Hemsl. (Lardizabalaceae) are all spiral in initiation. Stamen and petal (nectar‐leaf) primordia initiate independently and are different in shape. The petals and three stamens in the first whorl are retarded in the early developmental stages. The carpel primordia are conduplicate; the stigma is formed around the upper part of the ventral slit and the style is not differentiated. The functionally unisexual flowers are bisexual in organization in the early developmental stages. The development of the flowers on the inflorescence is spiral and centripetal. Some floral characteristics of Sinofranchetia appear to be plesiomorphic in Lardizabalaceae. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 82–92.  相似文献   

16.
Utilizing scanning electron microscopy, we studied the early floral ontogeny of three species of Caesalpinia (Leguminosae: Caesalpinioideae): C. cassioides, C. pulcherrima, and C. vesicaria. Interspecific differences among the three are minor at early and middle stages of floral development. Members of the calyx, corolla, first stamen whorl, and second stamen whorl appear in acropetal order, except that the carpel is present before appearance of the last three inner stamens. Sepals are formed in generally unidirectional succession, beginning with one on the abaxial side next to the subtending bracts, followed by the two lateral sepals and adaxial sepal, then lastly the other adaxial sepal. In one flower of C. vesicaria, sepals were helically initiated. In the calyx, the first-initiated sepal maintains a size advantage over the other four sepals and eventually becomes cucullate, enveloping the remaining parts of the flower. The cucullate abaxial sepal is found in the majority of species of the genus Caesalpinia. Petals, outer stamens, and inner stamens are formed unidirectionally in each whorl from the abaxial to the adaxial sides of the flower. Abaxial stamens are present before the last petals are visible as mounds on the adaxial side, so that the floral apex is engaged in initiation of different categories of floral organs at the same time.  相似文献   

17.
The mature wild type petals of Clarkia tembloriensis consist of a long slender claw and an expanded deltoid-shaped limb. They are pink, with a maroon spot at the base of the limb. Their surface texture is smooth. A variant of petal form, crinkled petal, occurs commonly in several natural populations of C. tembloriensis. The mature crinkled petals are elongated, greenish pink, and possess trichomes. They resemble the mature sepals of C. tembloriensis in general shape, color, and surface texture. Organ initiation and subsequent patterns of development of wild type petals, wild type sepals, and crinkled petals were examined and compared using scanning electron microscopy and allometric growth analysis. Crinkled petals are similar to wild type petals in time and position of primordia initiation, and in size and shape at inception. Crinkled petals are similar to wild type sepals in pattern of allometric growth. The crinkled petal mutant fits the broad definition of a homeotic mutant in that the petal has assumed characteristics of the sepal.  相似文献   

18.
 We report the cloning and characterization of the gene ABNORMAL FLORAL ORGANS (AFO), which is required for normal flower development in Arabidopsis. afo mutant flowers show defects in all four floral whorls. The number of organs in each whorl varies. Most flowers consist of reduced numbers of petals and stamens, even though supernumerary sepals and carpels may be observed. Abnormal organ structure is evident from an early stage. Mosaic first whorl organs are common, with some sepals taking on petaloid or staminoid characteristics. Stamens are often deformed, having thin filaments and reduced anthers, yet occasionally producing viable pollen. Partial fertility is indicated by some seed setting. The afo-1 mutation is caused by insertion of a gene trap Ds transposable element. The AFO gene was cloned and is predicted to encode a novel protein of 229 amino acids. The expression of AFO mRNA by northern blot analysis in combination with mutant phenotype suggests that the AFO gene product plays an important role in Arabidopsis flower development. We also report that antherless, a previously described male-sterile mutation, is allelic to afo-1. Received: 3 September 1998 / Revision accepted: 15 December 1998  相似文献   

19.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

20.
Wang YQ  Melzer R  Theissen G 《Annals of botany》2011,107(9):1445-1452

Background and Aims

Homeotic transitions are usually dismissed by population geneticists as credible modes of evolution due to their assumed negative impact on fitness. However, several lines of evidence suggest that such changes in organ identity have played an important role during the origin and subsequent evolution of the angiosperm flower. Better understanding of the performance of wild populations of floral homeotic varieties should help to clarify the evolutionary potential of homeotic mutants. Wild populations of plants with changes in floral symmetry, or with reproductive organs replacing perianth organs or sepals replacing petals have already been documented. However, although double-flowered varieties are quite popular as ornamental and garden plants, they are rarely found in the wild and, if they are, usually occur only as rare mutant individuals, probably because of their low fitness relative to the wild-type. We therefore investigated a double-flowered variety of lesser periwinkle, Vinca minor flore pleno (fl. pl.), that is reported to have existed in the wild for at least 160 years. To assess the merits of this plant as a new model system for investigations on the evolutionary potential of double-flowered varieties we explored the morphological details and distribution of the mutant phenotype.

Methods

The floral morphology of the double-flowered variety and of a nearby population of wild-type plants was investigated by means of visual inspection and light microscopy of flowers, the latter involving dissected or sectioned floral organs.

Key Results

The double-flowered variety was found in several patches covering dozens of square metres in a forest within the city limits of Jena (Germany). It appears to produce fewer flowers than the wild-type, and its flowers are purple rather than blue. Most sepals in the first floral whorl resemble those in the wild-type, although occasionally one sepal is broadened and twisted. The structure of second-whorl petals is very similar to that of the wild-type, but their number per flower is more variable. The double-flowered character is due to partial or complete transformation of stamens in the third whorl into petaloid organs. Occasionally, ‘flowers within flowers’ also develop on elongated pedicels in the double-flowered variety.

Conclusions

The flowers of V. minor fl. pl. show meristic as well as homeotic changes, and occasionally other developmental abnormalities such as mis-shaped sepals or loss of floral determinacy. V. minor fl. pl. thus adds to a growing list of natural floral homeotic varieties that have established persistent populations in the wild. Our case study documents that even mutant varieties that have reproductive organs partially transformed into perianth organs can persist in the wild for centuries. This finding makes it at least conceivable that even double-flowered varieties have the potential to establish new evolutionary lineages, and hence may contribute to macroevolutionary transitions and cladogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号