首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current pandemic (H1N1) 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1) 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice) and antigen content (1.77, 3.5 or 7.5 µg HA) of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses) but not a-Brisbane/59/07 induced detectable but modest (20–40 units) cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI) assays in mice. Only double administration (7.5 µg HA) of both vaccine in ferrets could elicit cross-reactivity (30–60 HI titers). Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest ∼30 HI titers (twice vaccinated). However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice) or virus shedding (ferrets and pigs) of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.  相似文献   

2.
The recent swine H1N1 influenza outbreak demonstrated that egg-based vaccine manufacturing has an Achille's heel: its inability to provide a large number of doses quickly. Using a novel manufacturing platform based on transient expression of influenza surface glycoproteins in Nicotiana benthamiana, we have recently demonstrated that a candidate Virus-Like Particle (VLP) vaccine can be generated within 3 weeks of release of sequence information. Herein we report that alum-adjuvanted plant-made VLPs containing the hemagglutinin (HA) protein of H5N1 influenza (A/Indonesia/5/05) can induce cross-reactive antibodies in ferrets. Even low doses of this vaccine prevented pathology and reduced viral loads following heterotypic lethal challenge. We further report on safety and immunogenicity from a Phase I clinical study of the plant-made H5 VLP vaccine in healthy adults 18-60 years of age who received 2 doses 21 days apart of 5, 10 or 20 μg of alum-adjuvanted H5 VLP vaccine or placebo (alum). The vaccine was well tolerated at all doses. Adverse events (AE) were mild-to-moderate and self-limited. Pain at the injection site was the most frequent AE, reported in 70% of vaccinated subjects versus 50% of the placebo recipients. No allergic reactions were reported and the plant-made vaccine did not significantly increase the level of naturally occurring serum antibodies to plant-specific sugar moieties. The immunogenicity of the H5 VLP vaccine was evaluated by Hemagglutination-Inhibition (HI), Single Radial Hemolysis (SRH) and MicroNeutralisation (MN). Results from these three assays were highly correlated and showed similar trends across doses. There was a clear dose-response in all measures of immunogenicity and almost 96% of those in the higher dose groups (2 × 10 or 20 μg) mounted detectable MN responses. Evidence of striking cross-protection in ferrets combined with a good safety profile and promising immunogenicity in humans suggest that plant-based VLP vaccines should be further evaluated for use in pre-pandemic or pandemic situations. TRIAL REGISTRATION: ClinicalTrials.gov NCT00984945.  相似文献   

3.
Influenza is one of the critical infectious diseases globally and vaccination has been considered as the best way to prevent. In this study, immunogenicity and protection efficacy between intranasal (IN) and microneedle (MN) vaccination was compared using inactivated swine-origin influenza A/H1N1 virus vaccine. Mice were vaccinated by MN or IN administration with 1 μg of inactivated H1N1 virus vaccine. Antigen-specific antibody responses and hemagglutination-inhibition (HI) titers were measured in all immunized sera after immunization. Five weeks after an immunization, a lethal challenge was performed to evaluate the protective efficacy. Furthermore, mice were vaccinated by IN administration with higher dosages (> 1 μg), analyzed in the same manner, and compared with 1 μg-vaccine-coated MN. Significantly higher antigen-specific antibody responses and HI titer were measured in sera in MN group than those in IN group. While 100% protection, slight weight loss, and reduced viral replication were observed in MN group, 0% survival rate were observed in IN group. As vaccine dose for IN vaccination increased, MN-immunized sera showed much higher antigen-specific antibody responses and HI titer than other IN groups. In addition, protective immunity of 1 μg-MN group was similar to those of 20- and 40 μg-IN groups. We conclude that MN vaccination showed more potential immune response and protection than IN vaccination at the same vaccine dosage.  相似文献   

4.
A phase III observational study evaluating a single-dose of an inactivated, split-virus, unadjuvanted AH1pdm vaccine in HCW was conducted. A safe and effective vaccine was needed after the emergence of AH1pdm in April 2009. We analyzed the immunogenicity and safety of the vaccine. A total of 409 subjects were enrolled and given 15 μg hemagglutinin antigen by s.c. injection. Antibody titers were measured using hemagglutination-inhibition antibody assays before vaccination and 28 days after. The co-primary immunogenicity end-points were the proportion of subjects with antibody titers of 1:40 or more, the proportion of subjects with either seroconversion or a significant increase in antibody titer, and the factor increase in geometric mean titer. We collected 389 pair samples. Antibody titers of 1:40 or more were observed in 148 of 389 subjects (38.0%, 95% CI: 33.2-42.9). The immunogenicity was also confirmed in other end-points, but was not sufficient and was lower than in previous reports. A total of 96 of adverse events was reported: 51 local events and 57 systemic events. There were 12 subjects with both local and systemic events. Nearly all events were mild to moderate except in four subjects. A single 15-μg dose of AH1pdm vaccine did not induce sufficient immunogenicity in HCW, with mild-to-moderate vaccine-associated adverse events. We need to consider further improvement of the AH1pdm vaccine program in HCW for the prevention of nosocomial infection, as well as for the benefit of HCW.  相似文献   

5.
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide cross-protection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.  相似文献   

6.
During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008–09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008–09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008–09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in influenza-naïve, systematically-infected ferrets may not replicate the human experience. While they cannot be considered conclusive to explain human observations, these ferret findings are consistent with direct, adverse effect of prior 2008–09 TIV receipt on A(H1N1)pdm09 illness. As such, they warrant further in-depth investigation and search for possible mechanistic explanations.  相似文献   

7.
Trivalent influenza virus A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong vaccine preparations were used in a randomized, controlled, dose-ranging phase I study. The vaccines were prepared from highly purified hemagglutinin and neuraminidase from influenza viruses propagated in embryonated chicken eggs and inactivated with formaldehyde. We assigned 100 participants to six vaccine groups, as follows. Three intranasally vaccinated groups received 7.5-microg doses of hemagglutinin from each virus strain with either 3, 10, or 30 microg of heat-labile Escherichia coli enterotoxin (LTK63) and 990 microg of a supramolecular biovector; one intranasally vaccinated group was given 7.5-microg doses of hemagglutinin with 30 microg of LTK63 without the biovector; and another intranasally vaccinated group received saline solution as a placebo. The final group received an intramuscular vaccine containing 15 microg hemagglutinin from each strain with MF59 adjuvant. The immunogenicity of two intranasal doses, delivered by syringe as drops into both nostrils with an interval of 1 week between, was compared with that of two inoculations by intramuscular delivery 3 weeks apart. The intramuscular and intranasal vaccine formulations were both immunogenic but stimulated different limbs of the immune system. The largest increase in circulating antibodies occurred in response to intramuscular vaccination; the largest mucosal immunoglobulin A (IgA) response occurred in response to mucosal vaccination. Current licensing criteria for influenza vaccines in the European Union were satisfied by serum hemagglutination inhibition responses to A/Panama and B/Guandong hemagglutinins given with MF59 adjuvant by injection and to B/Guandong hemagglutinin given intranasally with the highest dose of LTK63 and the biovector. Geometric mean serum antibody titers by hemagglutination inhibition and microneutralization were significantly higher for each virus strain at 3 and 6 weeks in recipients of the intramuscular vaccine than in recipients of the intranasal vaccine. The immunogenicity of the intranasally delivered experimental vaccine varied by influenza virus strain. Mucosal IgA responses to A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong were highest in participants given 30 microg LTK63 with the biovector, occurring in 7/15 (47%; P=0.0103), 8/15 (53%; P=0.0362), and 14/15 (93%; P=0.0033) participants, respectively, compared to the placebo group. The addition of the biovector to the vaccine given with 30 microg LTK63 enhanced mucosal IgA responses to A/Duck/Singapore (H5N3) (P=0.0491) and B/Guandong (P=0.0028) but not to A/Panama (H3N2). All vaccines were well tolerated.  相似文献   

8.
Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1.63 +/- 0. 25) than did i.n. immunization with NYVAC-HF (0.88 +/- 0.36; n = 9) and ALVAC-HF (0.61 +/- 0.43; n = 9, P = 3 x 10(-7)), and survival was also significantly better in the i.n.-parenteral group (3 of 9) than in the other HF-vaccinated animals (none of 18) or in controls immunized with RG (none of 5) (P = 0.0374). Multiple routes were not tested with the ALVAC vaccine. The results suggest that infant ferrets are less responsive to i.n. vaccination than are older ferrets and raises questions about the appropriateness of this route of immunization in infant ferrets or infants of other species.  相似文献   

9.
目的:研究H1N1型流感病毒神经氨酸酶(NA)在原核系统中的表达、纯化方法及其免疫原性。方法:构建了大肠杆菌表达载体pET22b-NA,并转化了大肠杆菌BL21(DE3);通过SP-Sepharose Fast Flow柱对重组NA进行分离纯化,并用Sephadex G-25柱对SP柱后获得的NA进行柱上复性;用不同剂量的重组NA免疫BALB/c小鼠,并检测其诱导产生的抗体滴度。结果:大肠杆菌表达的NA以包涵体形式存在,通过分离及柱上复性,纯化得到重组NA;NA抗原的免疫原性是剂量依赖的,随着剂量的增加,其免疫原性相应增强,3次免疫后,3μg NA诱导小鼠产生的抗体滴度最高,为1∶7000。结论:大肠杆菌表达的NA具有一定的诱导小鼠产生针对天然NA的抗体的能力,为流感病毒基因工程疫苗研究提供了初步线索。  相似文献   

10.
Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission.  相似文献   

11.
为了探讨甲型H1N1流感病毒氢氧化铝佐剂疫苗对小鼠的免疫作用及对小鼠繁殖性能的影响,以不同剂量、不同免疫程序免疫小鼠后定期采血;用血凝抑制(HI)方法检测血清H1N1流感病毒HI抗体滴度,观察H1N1流感病毒佐剂疫苗对小鼠受孕、产仔、哺乳的影响;比较孕鼠及非孕鼠的抗体滴度,免疫后孕鼠所产仔鼠的体重及H1N1胎传抗体水平。结果显示,以0.5μg组开始的不同剂量、不同免疫程序均可使小鼠产生90倍以上水平的H1N1流感病毒抗体;免疫后的小鼠不影响受孕、产仔及哺乳;仔鼠保护性抗体可持续1个月以上。H1N1流感病毒佐剂疫苗是一种高免疫原性的制剂,用低剂量免疫,即可产生90倍以上持续时间较长的保护性抗体。这种佐剂疫苗对小鼠的繁殖性能无明显影响,免疫产生的抗体经胎盘可垂直传递给仔鼠。  相似文献   

12.
The cross‐reactivity of antibody to the swine‐origin pandemic influenza A (H1N1) 2009 virus induced by vaccination with a seasonal trivalent influenza vaccine was studied. Paired sera from a cohort of adult volunteers vaccinated with a trivalent seasonal influenza vaccine every year from 2006 to 2008 were collected each year and tested by hemagglutination inhibition (HI) for antibody against the pandemic influenza A (H1N1) 2009 virus. There was little increase in the geometric mean titer overall; a slight increase was detected in the sera obtained in the 2007–2008 season but not in the other two seasons. The proportion of individuals with HI antibody titers ≥ 1:40 did not change significantly from year to year. These results indicate that cross‐reactivity of the antibodies induced by a trivalent seasonal vaccine to the pandemic influenza A (H1N1) 2009 virus is marginal.  相似文献   

13.
Scientic-production association "Microgen" has finished 1st phase of clinical trials of candidate vaccines against avian influenza in order to assess their reactogenicity, safety, and immunogenicity. Two vaccines constructed from NIBRG-14 vaccine strain [A/Vietnam/1 194/2004 (H5N1)], obtained from World Health Organization, were studied: "OrniFlu" (inactivated subunit influenza vaccine adsorbed on aluminium hydroxide) and inactivated polymer-subunit influenza vaccine with polyoxydonium (IPSIV). Clinical trial of the vaccines with different quantity of antigen (15, 30, and 45 mcg of H5N1 virus hemagglutinin) was carried out in Influenza Research Institute (St. Petersburg) and in Mechnikov Research Institute of Vaccines and Sera (Moscow). Analysis of results allowed to conclude that both vaccines were safe, well tolerated and characterized by low reactogenicity. Two-doses vaccination schedule was needed to meet required seroconversion and seroprotection rates (> or =1:40 in > or =70% of vaccinated volunteers). "Orni-Flu" vaccine containing 15 mcg of hemagglutinin and optimal quantity of aluminium hydroxide (0.5 mg) in one dose as well as IPSIV containing 45 mcg of hemagglutinin and 0.75 mg of polyoxydonium in one dose were most immunogenic after 2 doses - seroprotection rates in microneutralization assay were 72.2% and 77.0% respectively. Marked influence of aluminium hydroxide content on immunogenicity of the "OrniFlu" vaccine was confirmed in the study. Optimal quantity of adjuvant was 0.5 mg per dose. According to basic concept of vaccine development, preference is given to vaccine that under minimal quantity of antigen induces sufficient specific immune response and is safe in volunteers. "OrniFlu" vaccine containing 15 mcg of H5N1 virus hemagglutinin and optimal quantity of aluminium hydroxide (0.5 mg) corresponded to these requirements that allowed researchers to recommend it for clinical trials of 2nd phase.  相似文献   

14.
The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. We have developed bacterial systems for expression and purification of properly folded functional hemagglutinin as a rapid response to emerging pandemic strains. A recombinant H5N1 (A/Vietnam/1203/2004) hemagglutinin globular domain (HA1) was produced in Escherichia coli under controlled redox refolding conditions. Importantly, the properly folded HA1(1-320), i.e., HA1 lacking amino acids 321 to 330, contained ≥75% functional oligomers without addition of foreign oligomerization sequence. Site-directed mutagenesis mapped the oligomerization signal to the HA1 N-terminal Ile-Cys-Ile residues at positions 3 to 5. The purified HA1 oligomers (but not monomers) bound fetuin and agglutinated red blood cells. Upon immunization of rabbits, the oligomeric HA1(1-320) elicited potent neutralizing antibodies against homologous and heterologous H5N1 viruses more rapidly than HA1(28-320) containing only monomers. Ferrets vaccinated with oligomeric HA1 (but not monomeric HA1 with the N terminus deleted) at 15 and 3 μg/dose were fully protected from lethality and weight loss after challenge with homologous H5N1 (A/Vietnam/1203/2004, clade 1) virus, as well as heterologous clade 2.2 H5N1 (A/WooperSwan/Mongolia/244/2005) virus. Protection was associated with a significant reduction in viral loads in the nasal washes of homologous and heterologous virus challenged ferrets. This is the first study that describes the presence of an N-terminal oligomerization sequence in the globular domain of influenza virus hemagglutinin. Our findings suggest that functional oligomeric rHA1-based vaccines can be produced efficiently in bacterial systems and can be easily upscaled in response to a pandemic influenza virus threat.  相似文献   

15.

Background

Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus.

Results

Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses.

Conclusion

Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus.  相似文献   

16.

Background

Pregnant women were suspected to be at particular risk when H1N1pnd09 influenza became pandemic in 2009. Our primary objective was to compare the immune responses conferred by MF59®-adjuvanted vaccine (Focetria®) in H1N1pnd09-naïve pregnant and non-pregnant women. The secondary aims were to compare influences of dose and adjuvant on the immune response.

Methods

The study was nested in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2010) pregnancy cohort in 2009-2010 and conducted as a single-blinded block-randomised [1∶1∶1] controlled clinical trial in pregnant women after gestational week 20: (1) 7.5 µg H1N1pnd09 antigen with MF59-adjuvant (Pa7.5 µg); (2) 3.75 µg antigen half MF59-adjuvanted (Pa3.75 µg); (3) 15 µg antigen unadjuvanted (P15 µg); and in non-pregnant women receiving (4) 7.5 µg antigen full adjuvanted (NPa7.5 µg). Blood samples were collected at baseline, 3 weeks, 3 and 10 months after vaccination, adverse events were recorded prospectively.

Results

58 pregnant women were allocated to Pa7.5 µg and 149 non-pregnant women were recruited to NPa7.5 µg. The sero-conversion rate was significantly increased in non-pregnant (NPa7.5 µg) compared with pregnant (Pa7.5 µg) women (OR = 2.48 [1.03–5.95], p = 0.04) and geometric mean titers trended towards being higher, but this difference was not statistically significant (ratio 1.27 [0.85–1.93], p = 0.23). The significant titer increase rate showed no difference between pregnant (Pa7.5 µg) and non-pregnant (NPa7.5 µg) groups (OR = 0.49 [0.13–1.85], p = 0.29).

Conclusion

Our study suggests the immune response to the 7.5 µg MF59-adjuvanted Focetria® H1N1pnd09 vaccine in pregnant women may be diminished compared with non-pregnant women.

Trial Registration

ClinicalTrials.gov NCT01012557.  相似文献   

17.
The attenuated S- strain of Japanese encephalitis virus was produced from a wild strain of this virus by serial cultivation in primary bovine kidney cell cultures at 30 degrees C. Pigs were inoculated with it and examined for ability to produce antibody and protect themselves from infection with a wild strain used for challenge. In pigs inoculated with a single dose of 10(6.5) approximately 10(7.5) TCID50 of the S- strain, the neutralizing antibody titer or hemagglutination-inhibiting antibody (HI) titer increased to 10 approximately 320. An antibody titer exceeding 10 was maintained for 2 approximately 9 weeks. In pigs inoculated twice with 10(6.5) approximately 10(7.0) TCID50 of the S- strain, HI titer increased to 80 approximately 640. In many of these pigs, HI titers of 80 approximately 160 persisted for more than 6 weeks. Pigs inoculated once or twice with 10(7.0) approximately 10(7.5) TCID50 of the S- strain were challenged by inoculation with 10(4.5) approximately 10(5.5) TCID50 of a wild strain and examined for the occurrence of viremia. As a result, an ability to protect from infection was demonstrated in pigs which showed an antibody titer surpassing 10 at the time of challenge. Pregnant sows inoculated with 10(7.0) TCID50 of the S- strain were challenged by inoculation with 10(7.0) TCID50 of a wild strain. Neither death nor infection occurred to any fetus harbored by them. From these results, it is concluded that the S- strain can be used as live virus vaccine for porcine practice.  相似文献   

18.
The influenza virus H1N1 pandemic of 1918 was one of the worst medical catastrophes in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus [A(H1N1)pdm09], the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV), share cross-reactive antigenic determinants. In this study, we demonstrate that immunization with the 2010-2011 seasonal TIV induces neutralizing antibodies that cross-react with the reconstructed 1918 pandemic virus in ferrets. TIV-immunized ferrets subsequently challenged with the 1918 virus displayed significant reductions in fever, weight loss, and virus shedding compared to these parameters in nonimmune control ferrets. Seasonal TIV was also effective in protecting against the lung infection and severe lung pathology associated with 1918 virus infection. Our data demonstrate that prior immunization with contemporary TIV provides cross-protection against the 1918 virus in ferrets. These findings suggest that exposure to A(H1N1)pdm09 through immunization may provide protection against the reconstructed 1918 virus which, as a select agent, is considered to pose both biosafety and biosecurity threats.  相似文献   

19.
犬传染性肝炎DNA疫苗安全性评价   总被引:1,自引:0,他引:1  
目的研究犬传染性肝炎核酸疫苗pVAX1-CpG-Loop的安全性。方法 BALB/c小鼠随机分为4组,高剂量组(肌内注射每只200μg)、低剂量组(肌内注射每只100μg)、联合免疫组(肌内注射每只100μg,皮下注射50μg,滴鼻每只50μg)和PBS组,每两周免疫1次,共免疫3次。末次免疫后4周、6个月检测血常规和血液生化及对F1代的影响,用PCR和RT-PCR的方法检测DNA疫苗的生物学分布和存留时间,末次免疫后4周和6个月取脏器观察病理损伤。结果各剂量组的主要血液学检测指标、对F1代的影响差异无显著性。末次免疫后4周各剂量组AST明显高于对照组。DNA疫苗在注射部位可存留8周,其中高剂量组和低剂量组在肝、脾、肾和注射部位有分布,联合免疫组在肺组织也有分布。末次免疫后4周小鼠肝肾有淋巴细胞浸润,6个月后慢性炎症明显好转。结论由犬传染性肝炎病毒DNA疫苗引起的肝肾损伤是一过性的,并且pVAX1-CpG-Loop没有整合到宿主基因组,也没有传递给F1代。  相似文献   

20.
There is need for improved human influenza vaccines, particularly for older adults who are at greatest risk for severe disease, as well as to address the continuous antigenic drift within circulating human subtypes of influenza virus. We have engineered an influenza virus-like particle (VLP) as a new generation vaccine candidate purified from the supernatants of Sf9 insect cells following infection by recombinant baculoviruses to express three influenza virus proteins, hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1). In this study, a seasonal trivalent VLP vaccine (TVV) formulation, composed of influenza A H1N1 and H3N2 and influenza B VLPs, was evaluated in mice and ferrets for the ability to elicit antigen-specific immune responses. Animals vaccinated with the TVV formulation had hemagglutination-inhibition (HAI) antibody titers against all three homologous influenza virus strains, as well as HAI antibodies against a panel of heterologous influenza viruses. HAI titers elicited by the TVV were statistically similar to HAI titers elicited in animals vaccinated with the corresponding monovalent VLP. Mice vaccinated with the TVV had higher level of influenza specific CD8+ T cell responses than a commercial trivalent inactivated vaccine (TIV). Ferrets vaccinated with the highest dose of the VLP vaccine and then challenged with the homologous H3N2 virus had the lowest titers of replicating virus in nasal washes and showed no signs of disease. Overall, a trivalent VLP vaccine elicits a broad array of immunity and can protect against influenza virus challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号