首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

2.
It has been shown previously that some immortalized human cells maintain their telomeres in the absence of significant levels of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). Cells utilizing ALT have telomeres of very heterogeneous length, ranging from very short to very long. Here we report the effect of telomerase expression in the ALT cell line GM847. Expression of exogenous hTERT in GM847 (GM847/hTERT) cells resulted in lengthening of the shortest telomeres; this is the first evidence that expression of hTERT in ALT cells can induce telomerase that is active at the telomere. However, rapid fluctuation in telomere length still occurred in the GM847/hTERT cells after more than 100 population doublings. Very long telomeres and ALT-associated promyelocytic leukemia (PML) bodies continued to be generated, indicating that telomerase activity induced by exogenous hTERT did not abolish the ALT mechanism. In contrast, when the GM847 cell line was fused with two different telomerase-positive tumor cell lines, the ALT phenotype was repressed in each case. These hybrid cells were telomerase positive, and the telomeres decreased in length, very rapidly at first and then at the rate seen in telomerase-negative normal cells. Additionally, ALT-associated PML bodies disappeared. After the telomeres had shortened sufficiently, they were maintained at a stable length by telomerase. Together these data indicate that the telomerase-positive cells contain a factor that represses the ALT mechanism but that this factor is unlikely to be telomerase. Further, the transfection data indicate that ALT and telomerase can coexist in the same cells.  相似文献   

3.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

4.
Telomere length can be maintained by telomerase or by a recombination-based pathway. Because individual telomeres in cells using the recombination-based pathway of telomere maintenance appear to periodically become extremely short, cells using this pathway to maintain telomeres may be faced with a continuous state of crisis. We expressed telomerase in a human cell line that uses the recombination-based pathway of telomere maintenance to test whether telomerase would prevent telomeres from becoming critically short and examine the effects that this might have on the recombination-based pathway of telomere maintenance. In these cells, telomerase maintains the length of the shortest telomeres. In some cases, the long heterogeneous telomeres are completely lost, and the cells now permanently contain short telomeres after only 40 population doublings. This corresponds to a telomere reduction rate of 500 base pairs/population doubling, a rate that is much faster than expected for normal telomere shortening but is consistent with the rapid telomere deletion events observed in cells using the recombination-based pathway of telomere maintenance (Murnane, J. P., Sabatier, L., Marder, B. A., and Morgan, W. F. (1994) EMBO J. 13, 4953-4962). We also observed reductions in the fraction of cells containing alternative lengthening of telomere-associated promyelocytic leukemia bodies and extrachromosomal telomere repeats; however, no alterations in the rate of sister chromatid exchange were observed. Our results demonstrate that human cells using the recombination-based pathway of telomere maintenance retain factors required for telomerase to maintain telomeres and that once the telomerase-based pathway of telomere length regulation is engaged, recombination-based elongation of telomeres can be functionally inhibited.  相似文献   

5.
Telomerase inhibition may be a novel anti-cancer strategy that can be used in combination with conventional therapies, such as DNA damaging agents. There are conflicting reports as to whether and to what extent telomerase and telomere length influence the sensitivity of cells to genotoxins. To understand the relationship between telomere length, telomerase expression, and sensitivity to genotoxic stress, we expressed the catalytic subunit of telomerase, hTERT, in human fibroblasts having different telomere lengths. We show that telomerase confers resistance to ionizing radiation, bleomycin, hydrogen peroxide, and etoposide only in cells with short, presumably near-dysfunctional, telomeres. This resistance depended on the ability of telomerase to elongate the short telomeres, and telomerase did not protect cells with long telomeres. Interestingly, although long telomeres had no effect on sensitivity to etoposide and bleomycin, they exacerbated sensitivity to hydrogen peroxide, supporting the idea that, compared to other types of DNA damage, telomeres are particularly vulnerable to oxidative damage. Our findings identify a mechanism and conditions under which telomerase and telomeres affect the response of human cells to genotoxic agents and may have important implications for anti-cancer interventions.  相似文献   

6.
Expression of the catalytic subunit of human telomerase, hTERT, extends human primary fibroblast life span. Such life span extension has generally been reported to be accompanied by net telomere lengthening, which led to the hypothesis that it is the telomere lengthening that causes the life span extension. Here we show that hTERT+C and hTERT-FlagC, mutant telomerase proteins with either 10 additional residues or a FLAG epitope added to the hTERT C-terminus, confer significant but limited life span extension to IMR90 human primary lung fibroblasts. However, as the cells continue to grow for >100 population doublings past their normal senescence point, bulk telomere length continues to erode to lengths much shorter than those seen at the senescence of control telomerase-negative cells. Expression of hTERT+C immortalized IMR90 cells transformed by three different oncogenes. Again, bulk telomeres became much shorter than those of the control cells at crisis. Additional hTERT mutants were constructed and analyzed similarly. Enzymatically active hTERT-N125A+T126A, like other previously reported conserved GQ domain mutants and C-terminally HA-tagged hTERT, failed to extend life span. Another GQ domain mutant, hTERT-E79A, was indistinguishable from wild-type hTERT in its cell growth effects, but there was no net telomere lengthening. These results uncover further hTERT allele-specific phenotypes that uncouple telomerase activity, net telomere lengthening and life span extension.  相似文献   

7.
8.
It has been proposed that the progressive shortening of telomeres in somatic cells eventually results in senescence. Previous experiments have demonstrated that many immortal cell lines have acquired telomerase activity leading to stabilization of telomere length. Telomere dynamics and telomerase activity were examined in the telomerase-positive immortal cell lines HeLa and 293 and subclones derived from them. A mass culture of HeLa cells had a stable mean telomere length over 60 population doublings (PD)in vitro.Subclones of this culture, however, had a range of mean telomere lengths indicating that telomeric heterogeneity exists within a population with a stable mean telomere length. Some of the subclones lacked detectable telomerase activity soon after isolation but regained it by PD 18, suggesting that at least some of the variation in telomere length can be attributed to variations in telomerase activity levels. 293 subclones also varied in telomere length and telomerase activity. Some telomerase-positive 293 subclones contained long telomeres that gradually shortened, demonstrating that factors other than telomerase also act to modulate telomere length. Fluctuations in telomere length in telomerase-positive immortalized cells may contribute to chromosomal instability and clonal evolution.  相似文献   

9.
Telomere shortening and lack of telomerase activity have been implicated in cellular senescence in human fibroblasts. Expression of the human telomerase (hTERT) gene in sheep fibroblasts reconstitutes telomerase activity and extends their lifespan. However, telomere length is not maintained in all cell lines, even though in vitro telomerase activity is restored in all of them. Cell lines expressing higher levels of hTERT mRNA do not exhibit telomere erosion or genomic instability. By contrast, fibroblasts expressing lower levels of hTERT do exhibit telomere shortening, although the telomeres eventually stabilize at a shorter length. The shorter telomere lengths and the extent of karyotypic abnormalities are both functions of hTERT expression level. We conclude that telomerase activity is required to bypass senescence but is not sufficient to prevent telomere erosion and genomic instability at lower levels of expression.  相似文献   

10.
11.
12.
Hemann MT  Strong MA  Hao LY  Greider CW 《Cell》2001,107(1):67-77
Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase.  相似文献   

13.
In many organisms, telomeric DNA consists of long tracts of short repeats. Shorter tracts are preferentially lengthened by telomerase, suggesting a conserved mechanism that recognizes and elongates short telomeres. Tel1p, an ATM family checkpoint kinase, plays an important role in telomere elongation, as cells lacking Tel1p have short telomeres and show reduced recruitment of telomerase components to telomeres. We show that Tel1p association increased as telomeres shortened in vivo in the presence or absence of telomerase and that Tel1p preferentially associated with the shortest telomeres. Tel1p association was independent of Tel1p kinase activity and enhanced by Mre11p. Tel1p overexpression simultaneously stimulated telomerase-mediated elongation and Tel1p association with all telomeres. Thus, Tel1p preferentially associates with the shortest telomeres and stimulates their elongation by telomerase.  相似文献   

14.
Telomerase plays a primary role in the maintenance of telomeres in immortal, germ, and tumor cells in humans but is lacking in most somatic cells and tissues. However, many species, including fish and inbred mice, express telomerase in most cells and tissues. Little is known about the expression of telomerase in aquatic species, although the importance of telomerase for longevity has been suggested. We compared telomerase activity and telomere lengths among a broad range of tissues from aquatic species and found telomerase at significant levels in both long- and short-lived aquatic species, suggesting constitutive telomerase expression has an alternative function. Telomere lengths in these aquatic species were comparable to those observed in normal human tissues and cell strains. Given that a host of aquatic species with short life spans have telomerase and a tremendous capacity to regenerate, we tested the hypothesis that telomerase upregulation is important for tissue regeneration. During regeneration, telomerase activity was upregulated and telomere lengths are maintained with the shortest telomeres being elongated, indicating the importance for maintaining telomere length and integrity during tissue regeneration. Thus, the expression of telomerase in aquatic animals is likely not related to longevity but to their ability to regenerate injured tissue.  相似文献   

15.
Control of human telomere length by TRF1 and TRF2   总被引:52,自引:0,他引:52       下载免费PDF全文
Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.  相似文献   

16.
Telomere homeostasis, a process that is essential for continued cell proliferation and genomic stability, is regulated by endogenous telomerase and a collection of associated proteins. In this paper, a protein called KIP (previously reported as a protein that binds specifically to DNA-dependent protein kinase), has been identified as a telomerase-regulating activity based on the following pieces of evidence. First, complexes between KIP and the catalytic subunit of telomerase (hTERT) were identified using the yeast two-hybrid technique. Second, antibodies specific to KIP immunoprecipitate human telomerase in cell-free extracts. Third, immunolocalization experiments demonstrate that KIP is a nuclear protein that co-localizes with hTERT in cells. Fourth, KIP binds to hTERT both in vitro and in vivo in the absence of human telomerase RNA or telomeric DNA, thus defining the catalytic subunit of telomerase as the site of physical interaction. Fifth, co-immunoprecipitation experiments suggest that KIP-hTERT complexes form readily in cells and that overexpression of KIP in telomerase-positive cells increases endogenous telomerase activity. Finally, continued overexpression of KIP (60 population doublings) resulted in cells with elongated telomeres; thus, KIP directly or indirectly stimulates telomerase activity through hTERT and contributes to telomere lengthening. The collective data in this paper suggest that KIP plays a positive role in telomere length maintenance and/or regulation and may represent a novel target for anti-cancer drug development.  相似文献   

17.
S Ahmed  H Sheng  L Niu  E Henderson 《Genetics》1998,150(2):643-650
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.  相似文献   

18.
19.
20.
Loayza D  de Lange T 《Cell》2004,117(3):279-280
Telomerase is known to preferentially elongate the shortest telomeres in a cell. Using an elegant yeast assay, Texeira et al. (2004 [this issue of Cell]) address what aspect of telomerase action is regulated by telomere length: the frequency or the extent of telomere elongation. They show that short telomeres are elongated more frequently than long telomeres, arguing that telomeres switch between two states, one that allows telomere extension and one that does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号