首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetically engineered Pichia pastoris FPHY34 strain containing a 1.3 kb thermostable phytase gene (fphy) evolved by DNA shuffling was constructed and screened. Expression and purification conditions for the recombinant phytase were developed in this study. The effect of Pi on recombinant phytase expression and cell growth of P. pastoris FPHY34 was tested in shake flask culture. Optimization of carbon sources for cell growth and methanol feeding strategies for phytase expression in P. pastoris FPHY34 was carried out in a 50-L fermenter by fed-batch fermentation. The purification of phytase was investigated by micro-filtration and ultra-filtration followed by desalting, ion-exchange chromatography, and gel filtration in the ÄKTA system. It showed that the optimum inorganic phosphorus is 13.6 g L−1 and that glucose can be used as a substrate for P. pastoris cell growth instead of glycerol; the biomass yield of glycerol (YX/S) is slightly higher than that of glucose. Different profiles of lag phase and respiratory quotient (RQ) displayed between glucose and glycerol as the sole carbon source. The maximum phytase activity in per millimetre reached 2508 U mL−1 at a methanol feed rate of 3.0 mL L−1 h−1 after 80 h period of induction. A purification factor of 41.1 with a 32% yield was achieved after chromatographic purification. The specific enzyme activity was 80 U mg−1 and 3281 U mg−1 in that supernatant fraction and after gel filtration purification, respectively. The strain P. pastoris FPHY34 showed a promising application in phytase industrial production.  相似文献   

2.
The pelA gene, encoding a pectate lyase, from Treponema pectinovorum ATCC 33768 was isolated by heterologous expression of a cosmid library in Escherichia coli. In vitro transposon mutagenesis identified an open reading frame of 1293 bp capable of encoding a protein of 430 amino acids with a predicted amino-terminal signal sequence of 21 amino acids. Analysis of the amino acid sequence suggested that it is a member of the polysaccharide lyase family 10 of which all characterized members show pectate lyase activity. An amino-terminal His-tagged recombinant form of PelA was expressed and purified from E. coli. The recombinant enzyme has characteristics common to other bacterial pectate lyases such as an alkaline pH optimum, dependence on calcium ions for activity, and inhibition by zinc ions.  相似文献   

3.
A recombinant yeast Pichia pastoris carrying the gene encoding epoxide hydrolase (EH) of Rhodotorula glutinis was constructed and used for producing (S)-styrene oxide by enantioselective hydrolysis of racemic mixtures of styrene oxides. The EH gene was obtained by PCR amplification of cDNA of R. glutinis and integrated into the chromosomal DNA of P. pastoris to express EH under the control of AOX promoter. The recombinant yeast has a high hydrolytic activity toward (R)-styrene oxide as 358 nmol min−1 (mg cell)−1, which is about 10-fold higher than that of wild type R. glutinis. When kinetic resolution was conducted by the recombinant yeast at a high initial epoxides concentration of 526 mM that constitutes an epoxide–water two-liquid phase, chiral (S)-styrene oxide with an enantiomeric excess (e.e.) higher than 98% was obtained as 36% yield (theoretical, 50%) at 16 h.  相似文献   

4.
目的:改造毕赤酵母使其异源合成类黄酮生物合成途径的重要中间体肉桂酸、对香豆酸,并优化前体芳香族氨基酸生物合成途径以提高毕赤酵母的生产能力。方法:在毕赤酵母GS115中利用乙醇诱导型人工转录系统表达Rhodotorula glutinis来源的苯丙氨酸解氨酶,并在该重组菌株中分别过表达胞内芳香族氨基酸生物合成途径中的关键酶或其突变体以进行优化。结果:异源表达苯丙氨酸解氨酶可使毕赤酵母将自身产生的L-苯丙氨酸、L-酪氨酸转化为肉桂酸(38.8 mg/L)、对香豆酸(34.2 mg/L),而通过过表达相关酶进行优化,最终肉桂酸和对香豆酸的产量分别达到124.1 mg/L和302.0 mg/L。结论:利用新的异源宿主毕赤酵母成功合成了肉桂酸、对香豆酸,并对胞内的芳香族氨基酸生物合成途径进行了优化,表明毕赤酵母具有生产黄酮类化合物的应用潜力,也为其他芳香族氨基酸衍生物或植物化合物在毕赤酵母中的异源合成奠定了基础。  相似文献   

5.
The therapeutic enzyme asparaginase, which is used for the treatment of acute lymphoblastic leukaemia, is industrially produced by the bacteria Escherichia coli or Erwinia crysanthemi. In spite of its effectiveness as a therapeutic agent, the drug causes severe immunological reactions. As asparaginase is also produced by the yeast Saccharomyces cerevisiae, this microorganism could be considered for the production of the enzyme, providing an alternative antitumoral agent. In this study the ASP3 gene, that codes for the periplasmic, nitrogen regulated, asparaginase II from S. cerevisiae, was cloned and expressed in the methylotrophic yeast Pichia pastoris, under the control of the AOX1 gene promoter. Similarly to S. cerevisiae the heterologous enzyme was addressed to the P. pastoris cell periplasmic space. Enzyme yield per dry cell mass reached 800 U g−1, which was seven fold higher than that obtained using a nitrogen de-repressed ure2 dal80 S. cerevisiae strain. High cell density cultures performed with P. pastoris harbouring the ASP3 gene using a 2 l instrumented bioreactor, where biomass concentration reached 107 g l−1, resulted in a dramatic increase in volumetric yield (85,600 U l−1) and global volumetric productivity (1083 U l−1 h−1).  相似文献   

6.
The scene of the protein micro-heterogeneity of recombinant hirudin-II (HV2) expressed in Pichia pastoris was investigated. It was shown that three derivatives of HV2 were present in the fermentation broth of P. pastoris, which were intact HV2 and its two derivatives truncated the C-terminal amino acid residue Gln and Leu-Gln, respectively. To purify the minor degradation derivatives of HV2, a simple, biocompatible and scale-up-feasible purification process with two-step ion-exchange chromatography was established instead of usual reverse phase chromatography. The purities of end products were over 96% and the residual endotoxin less than 0.5 EU/ml.  相似文献   

7.
Antifungal compounds in the culture filtrate from Bacillus subtilis NSRS 89-24 that inhibited the growth of Pyricularia grisea and Rhizoctonia solani were mainly heat stable as the filter sterilized culture filtrate showed higher activity than an autoclaved one. The heat stable and labile components were due to an antibiotic and a β-1,3-glucanase, respectively. This β-1,3-glucanase was purified and characterized. Glucanase activity in the culture medium of B. subtilis NSRS 89-24 was inducible in the presence of 0.3% chitin, reaching a maximum on day 5. After purification, activity was associated with a protein of molecular mass of approximately 95.5 kDa by both gel filtration and native PAGE. Two major bands of Mr 64.6 and 32.4 kDa were revealed by SDS–PAGE. The enzyme had a Km of 0.9 mg/ml, and Vmax of 0.11 U, the optimal pH was 6.5–9.5 and was stable up to 50 °C. Both the pure enzyme and the antibiotic extract from the culture filtrate of the B. subtilis separately inhibited R. solani and P. grisea with MIC values of 12.5 and 6.25 mU/ml and 3.13 and 1.56 μg/ml, respectively. The glucanase enzyme in combination with the antibiotic showed a strong synergistic inhibitory effect on the hyphal growth of both fungi.  相似文献   

8.
本研究利用巴斯德毕赤酵母Pichia pastoris蛋白表达体系表达了药用担子菌桦褐孔菌的一个二肽酶基因。该二肽酶基因编码区全长1814bp,包含6个内含子,编码465个氨基酸。生物信息学分析发现,二肽酶基因编码的蛋白中不含信号肽序列,但在第55–77位氨基酸之间存在一个跨膜结构。将含跨膜结构和去跨膜结构蛋白的cDNA序列分别克隆到酵母分泌型表达载体pPICZαA上,电转化至巴斯德毕赤酵母X-33中,用1%(V/V)甲醇诱导重组菌株表达目标蛋白,采用SDS-PAGE和Western-blot检测表达蛋白。结果显示,巴斯德毕赤酵母可表达含跨膜结构的完整基因,但目标蛋白不能分泌到胞外,存在于破碎细胞的沉淀中,且没有催化活性;而去跨膜结构的蛋白则可分泌表达到胞外,并具有催化活性。Ni-NTA纯化去跨膜结构的桦褐孔菌二肽酶浓度可达0.12mg/mL,并发现其在pH 7.3、反应温度50℃、反应时间2h的条件下,以Gly-Gly为底物时,其比活为433U/mg。同时检测到其对Ile-Leu、Trp-Trp和Phe-Phe具有较高的水解活性。  相似文献   

9.
The gene encoding pectate lyase (PL) from Bacillus subtilis WSHB04-02 was amplified by PCR, fused with a periplasmic secretion signal peptide sequence, pelB, from pET22b(+), cloned and expressed in Escherichia coli cells using a temperature control vector, pHsh. The recombinant E. coil was grown in a 5 l fermentor. PL was secreted in broth at 22 U l−1 after 20 h when temperature was increased from 30°C to 42°C. The recombinant enzyme was purified to homogeneity as judged by SDS-PAGE. It was optimally active at pH 9.4 and 50°C over 30 min. Analysis of polygalacturonic acid (PGA) degradation products by electrospray ionization (ESI)-mass spectrometry (MS) indicated that PL produced a mixture of unsaturated oligo-galacturonides including unsaturated tri-galacturonic acid and unsaturated bi-galacturonic acid but not unsaturated mono-galacturonic acid.  相似文献   

10.
Bacillus subtilis strain SO113 secretes a pectate lyase which is produced during the exponential death phase of growth, just before sporulation. This extracellular pectate lyase, which produces unsaturated products from polygalacturonate, was purified 35-fold from the culture supernatant of Bacillus subtilis by a CM Sephadex chromatography. It has an isoelectric point of about 9.6 and an Mr of 42,000. Optimum activity occurred at pH 8.4 and at 42 degrees C. Calcium has a stimulative effect on the enzyme activity while EDTA leads to enzyme inactivation. The pectate lyase has a specific activity of 131 mumol of aldehyde groups per min and per mg of protein. The Km of the purified enzyme for polygalacturonic acid was 0.862 g.l-1 and the Vmax for polygalacturonic acid hydrolysis was 1.475 mumol of unsaturated products per min and per mg of protein. By using monoclonal antibodies raised against Erwinia chrysanthemi 3937 pectate lyases, it was shown that pectate lyases b and c of this strain are immunologically closely related to the Bacillus subtilis pectate lyase.  相似文献   

11.
利用盐析-透析-色谱流程建立快速高效纯化工程菌E.coli JM109(pHsh PL)所产碱性果胶酯裂解酶(PL)的方法,纯化后酶达到电泳纯,比酶活为1079U/mg.重组菌所产PL酶促反应适宜的pH为9~10,适宜温度为50~66 ℃,与酶基因来源野生菌所产PL相比,重组菌所产PL适宜pH范围有所扩大,并保持了野生菌PL的热稳定性.通过金属离子种类、浓度及存在时间对PL酶活力影响考察发现:在考察的离子中除Mg2 对酶活有较好的促进作用外,其余对重组菌PL均有抑制作用,其中Fe2 对酶活力抑制作用最强.该酶的Km值为20.93 mg/L,Vmax为105.3 μmol/min,反应活化能Ea为21.74 kJ/mol.对重组菌所产PL热稳定动力学进行分析,发现有底物情况下的失活常数kd(0.02 min-1)小于无底物情况下的失活常数kd(0.0342 min-1),说明当酶与底物结合形成复合物时对酶活具有保护作用.利用HPLC-ESI-MS对重组菌所产PL酶解产物进行测定发现,产物含有不饱和二聚半乳糖醛酸(m/z 350.82)和不饱和三聚半乳糖醛酸(m/z 527.04),同时测定结果中没有发现不饱和半乳糖醛酸单体(m/z 175),可以初步推测重组菌PL不能以不饱和二聚半乳糖醛酸和不饱和三聚半乳糖醛酸为底物进一步裂解.  相似文献   

12.
A new bacterial strain, identified as Bacillus subtilis US116, was isolated from Tunisian soil and selected for its potential production of an atypical amylase with an industrial interest. The identification was founded on physiological tests and molecular techniques related to the 16S rRNA, 23S rRNA genes and intergenic sequences showing the highest similarity of 98% with regions in the complete genome of Bacillus subtilis 168 (accession no. Z99104). This strain produces an atypical amylase that was purified to homogeneity by a combination of acetone precipitation, size exclusion and ion exchange chromatography. The molecular mass of the enzyme is about 60 kDa as determined by SDS–PAGE. Optimal conditions for the activity of the purified enzyme are pH 6 and 65 °C. The half-life duration is about 3 h at 70 °C and 5 h at 65 °C. This enzyme belongs to the endo-type amylases according to the hydrolytic mode study using Ceralpha and Betamyl methods. It is classified as a maltoheptaose- and maltohexaose-forming amylase since it generates about 30% maltohexaose (DP6) and 20% maltoheptaose (DP7) from starch. Moreover, the minimum length of maltosaccharide cleaved by this enzyme was maltoheptaose.  相似文献   

13.
赵怡  凌辉生  李任强 《生态科学》2011,30(2):174-177
为了实现Mn-SOD基因在大肠杆菌(E.coli)中的可溶性表达,根据枯草芽孢杆菌(Bacillus subtilis)168sodA核酸序列设计引物,以枯草芽孢杆菌ATCC 9372基因组为模板,PCR扩增获得了Mn-SOD基因.将此基因重组至原核表达载体pET-28a,构建含Mn-SOD基因的重组表达质粒,并转化至大肠杆菌BL21(DE3).异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达获得Mn-SOD,蛋白分子量约为26kD,占全菌蛋白的5.6%.改良的连苯三酚自氧化法测定SOD活力,菌体可溶性总蛋白SOD比活为51.09U·mg-1,是对照组的.8倍.枯草芽孢杆菌ATCC 9372 Mn-SOD基因在大肠杆菌BL21(DE3)中首次成功表达,产物具有较高的可溶性和活性,为大量制备Mn-SOD奠定了基础.  相似文献   

14.
Pectic enzymes in the supernatants of Erwinia chrysanthemi cultures in late-logarithmic-phase growth on D-galacturonan were resolved into three components: two pectate lyase isozymes and an exo-poly-alpha-D-galacturonosidase previously unreported in this organism. The hydrolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, preparative electrofocusing in Ultrodex gel, and gel filtration through Ultrogel AcA54. The enzyme had a specific activity of 591 mumol/min per mg of protein, a pI of 8.3, a molecular weight of 67,000, a pH optimum of 6.0, and a Km of 0.05 mM for D-galacturonan. Analyses of reaction mixtures by paper chromatography revealed that the enzyme released only digalacturonic acid from D-galacturonan. The action of the hydrolytic enzyme on D-galacturonan labeled at the nonreducing end by partial digestion with pectate lyase revealed that it rapidly released 4,5-unsaturated digalacturonic acid from 4,5-unsaturated pectic polymers. The production of extracellular exo-poly-alpha-D-galacturonosidase was coordinately regulated with pectate lyase production. The action patterns of the two enzymes appeared complementary in the degradation of pectic polymers to disaccharides that stimulated pectic enzyme production and supported bacterial growth.  相似文献   

15.
A gene encoding glutamate dehydrogenase (GDH) was found in the genome sequence of a commensal thermophile, Symbiobacterium toebii. The amino acid sequence deduced from the gdh I of S. toebii was well conserved with other thermostable GDHs. The gdh I which encodes GDH consisting of 409 amino acids was cloned and expressed in E. coli DH5 under the control of a highly constitutive expression (HCE) promoter in a pHCE system. The recombinant GDH was expressed without addition of any inducers in a soluble form. The molecular mass of the GDH was estimated to be 263 kDa by Superose 6 HR gel filtration chromatography and 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicating that the GDH was composed of hexameric form. The optimal temperature and pH of the purified enzyme were 60 °C and 9.0, respectively, and the purified GDH retained more than 75% of its original activity after an incubation at 70 °C for 30 min. Although NADP(H) was the preferred cofactor, S. toebii GDH was able to utilize either NADP(H) or NAD(H) as coenzyme.  相似文献   

16.
Alkaline pectate lyases are favorable for the textile industry. Here we report the cloning of a pectate lyase gene (pl A), from Klebsiella sp. Y1, and its heterologous expression in Escherichia coli. The full-length pl A consists of 1710 bp and encodes for a 569-amino acid polypeptide including a putative 22-residue signal peptide and a catalytic domain belonging to pectate lyase family 2. The recombinant enzyme (r-PL A) was purified to electrophoretic homogeneity by single-step Ni2+-NTA affinity chromatography and showed an apparent molecular weight of ∼60 kDa. The pH and temperature optima of r-PL A were found to be 9.0 and 30–50 °C, respectively. r-PL A was highly active at low temperatures, exhibiting >60% of the maximal activity at 20 °C and >20% activity even at 0 °C. The enzyme was stable in a broad alkaline pH range of 7.0–12.0 for 1 h at 37 °C. The values of Km(app) and Vmax(app) of r-PL A for polygalacturonic acid were 2.47 mg/ml and 11.94 μmol/min/mg, respectively. Compared with the commercial compound pectinase from Novozymes, purified r-PL A showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (68.8% vs. 67.1%) and in bioscouring of jute (7.38% vs. 7.58%). Thus r-PL A is a valuable material for the textile industry.  相似文献   

17.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   

18.
目的:对一株产鸟氨酸的钝齿棒杆菌Corynebacterium crenatum SYPA5-5/△proB/△argF(SYPO-1)进行代谢工程改造,筛选不同细菌来源的N-乙酰鸟氨酸脱乙酰基酶在大肠杆菌中克隆与表达,纯化后对其进行酶学性质的比较;将黏质沙雷氏菌Serratia marcescens Y213来源的Smarg E基因编码的N-乙酰鸟氨酸脱乙酰基酶在L-鸟氨酸生产菌株C.crenatum SYPO-1中过量表达,进一步提高L-鸟氨酸的产量。方法:通过利用pDXW10穿梭质粒对不同来源的N-乙酰鸟氨酸脱乙酰化酶进行克隆表达和酶学性质比较,选择性质最优来源的N-乙酰鸟氨酸脱乙酰基酶编码基因Smarg E在产L-鸟氨酸重组钝齿棒杆菌中表达,考察重组菌株发酵过程中参数的变化。结果:来源于S.marcescens Y213的N-乙酰鸟氨酸脱乙酰基酶比酶活最高为798.98U/mg,最适pH为7,最适温度为37℃,0.1mmol/L的Mg~(2+)、Li~+、Mn~(2+)促进酶的比酶活提高了50%;在钝齿棒杆菌中表达N-乙酰鸟氨酸脱乙酰基酶酶活达到128.4U/ml,显著提高了钝齿棒杆菌中胞内乙酰基循环水平;5L发酵罐发酵重组菌株96h,L-鸟氨酸的产量达到38.5g/L,比出发菌株,L-鸟氨酸的产量提高了33.2%,产率达0.401g/(L·h)。结论:筛选出最佳来源的N-乙酰鸟氨酸脱乙酰基酶,在鸟氨酸生产菌株C.crenatum(SYPO-1)中过量表达,可以促进鸟氨酸的前体物质N-乙酰鸟氨酸的快速消耗,实现鸟氨酸的积累。  相似文献   

19.
Although the lipase of Geotrichum candidum has been extensively reported, little attention has been focused on molecular genetic and biochemical characterizations of Galactomyces geotrichum lipases. A lipase gene from G. geotrichum Y05 was cloned from both genomic DNA and cDNA sources. Nucleotide sequencing revealed that the ggl gene has an ORF of 1692 bp without any introns, encoding a protein of 563 amino acid residues, including a potential signal sequence of 19 amino acid residues. The amino acid sequence of this lipase showed 86% identity to lipase of Trichosporon fermentans WU-C12. The mature lipase gene was subcloned into pPIC9K vector, and overexpressed in methylotrophic Pichia pastoris GS115. Active lipase was accumulated to the level of 100.0 U/ml (0.4 mg/ml) in the shake-flask culture, 10.4-fold higher than the activity of the original strain (9.6 U/ml). This yield dramatically exceeds that previously reported with 23–50 U/ml, 0.06 mg/ml and 0.2 mg/ml. The purified lipase exhibited several properties of significant industrial importance, such as pH and temperature stability, wide organic solvent tolerance and broad hydrolysis on vegetable oils. Such a combination of properties makes it a promising candidate for its application in non-aqueous biocatalysis, such as biodiesel production, selective hydrolysis or esterification for enrichment of PUFAs and oil-contaminated biodegradation, which have been drawn considerable attention currently.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号