首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subtilase cytotoxin (SubAB) is a AB5 type toxin produced by Shiga-toxigenic Escherichia coli , which exhibits cytotoxicity to Vero cells. SubAB B subunit binds to toxin receptors on the cell surface, whereas the A subunit is a subtilase-like serine protease that specifically cleaves chaperone BiP/Grp78. As noted previously, SubAB caused inhibition of protein synthesis. We now show that the inhibition of protein synthesis was transient and occurred as a result of ER stress induced by cleavage of BiP; it was closely associated with phosphorylation of double-stranded RNA-activated protein kinase-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α). The phosphorylation of PERK and eIF2α was maximal at 30–60 min and then returned to the control level. Protein synthesis after treatment of cells with SubAB was suppressed for 2 h and recovered, followed by induction of stress-inducible C/EBP-homologous protein (CHOP). BiP degradation continued, however, even after protein synthesis recovered. SubAB-treated cells showed cell cycle arrest in G1 phase, which may result from cyclin D1 downregulation caused by both SubAB-induced translational inhibition and continuous prolonged proteasomal degradation.  相似文献   

2.
Subtilase cytotoxin (SubAB) is the prototype of a new family of AB5 cytotoxins produced by Shiga toxigenic Escherichia coli . Its cytotoxic activity is due to its capacity to enter cells and specifically cleave the endoplasmic reticulum (ER) chaperone BiP. However, its trafficking within target cells has not been investigated previously. In Vero cells, fluorescence colocalization with subcellular markers established that SubAB is trafficked from the cell surface to the ER via a retrograde pathway similar, but not identical, to those of Shiga toxin (Stx) and cholera toxin (Ctx), with their pathways converging at the Golgi. The clathrin inhibitor phenylarsine oxide prevented SubAB entry and BiP cleavage in SubAB-treated Vero, HeLa and N2A cells, while cholesterol depletion did not, demonstrating that, unlike either Stx or Ctx, SubAB internalization is exclusively clathrin-dependent.  相似文献   

3.
The endoplasmic reticulum (ER) chaperone BiP/GRP78 regulates ER function and the unfolded protein response (UPR). Human cytomegalovirus infection of human fibroblasts induces the UPR but modifies it to benefit viral replication. BiP/GRP78 protein levels are tightly regulated during infection, rising after 36 h postinfection (hpi), peaking at 60 hpi, and decreasing thereafter. To determine the effects of this regulation on viral replication, BiP/GRP78 was depleted using the SubAB subtilase cytotoxin, which rapidly and specifically cleaves BiP/GRP78. Toxin treatment of infected cells for 12-h periods beginning at 36, 48, 60, and 84 hpi caused complete loss of BiP but had little effect on viral protein synthesis. However, progeny virion formation was significantly inhibited, suggesting that BiP/GRP78 is important for virion formation. Electron microscopic analysis showed that infected cells were resistant to the toxin and showed none of the cytotoxic effects seen in uninfected cells. However, all viral activity in the cytoplasm ceased, with nucleocapsids remaining in the nucleus or concentrated in the cytoplasmic space just outside of the outer nuclear membrane. These data suggest that one effect of the controlled expression of BiP/GRP78 in infected cells is to aid in cytoplasmic virion assembly and egress.  相似文献   

4.
5.
The novel cytotoxic factor subtilase cytotoxin (SubAB) is produced mainly by non‐O157 Shiga‐toxigenic Escherichia coli (STEC). SubAB cleaves the molecular chaperone BiP/GRP78 in the endoplasmic reticulum (ER), leading to activation of RNA‐dependent protein kinase (PKR)‐like ER kinase (PERK), followed by caspase‐dependent cell death. However, the SubAB uptake mechanism in HeLa cells is unknown. In this study, a variety of inhibitors and siRNAs were employed to characterize the SubAB uptake process. SubAB‐induced BiP cleavage was inhibited by high concentrations of Dynasore, and methyl‐β‐cyclodextrin (mβCD) and Filipin III, but not suppressed in clathrin‐, dynamin I/II‐, caveolin1‐ and caveolin2‐knockdown cells. We observed that SubAB treatment led to dramatic actin rearrangements, e.g. formation of plasma membrane blebs, with a significant increase in fluid uptake. Confocal microscopy analysis showed that SubAB uptake required actin cytoskeleton remodelling and lipid raft cholesterol. Furthermore, internalized SubAB in cells was found in the detergent‐resistant domain (DRM) structure. Interestingly, IPA‐3, an inhibitor of serine/threonine kinase p21‐activated kinase (PAK1), an important protein of macropinocytosis, directly inhibited SubAB‐mediated BiP cleavage and SubAB internalization. Thus, our findings suggest that SubAB uses lipid raft‐ and actin‐dependent, but not clathrin‐, caveolin‐ and dynamin‐dependent pathways as its major endocytic translocation route.  相似文献   

6.
Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)‐negative strains of Shiga‐toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase‐dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB‐induced SG formation is regulated by activation of double‐stranded RNA‐activated protein kinase (PKR)‐like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12‐myristate 13‐acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4Cl and chloroquine, suppressed SubAB‐induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death‐associated protein 1 (DAP1) knockdown increased basal phospho‐PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA‐treated cells. Our findings show that SubAB‐induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin‐induced SG formation.  相似文献   

7.
Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and β-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.  相似文献   

8.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

9.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

10.
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN‐γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN‐γ‐induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN‐γ‐induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN‐γ‐induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor‐2α (eIF2α) and down‐regulation of the vesicle‐associated membrane protein‐associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN‐γ‐induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER‐related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN‐γ‐induced persistent infection.  相似文献   

11.
Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) and express large amounts of chaperones and protein disulfide isomerases (PDI) to meet the high demand for synthesis of proteins. We have observed an unexpected decrease in chaperone protein level in the β-cell model INS-1E after exposure to the ER stress inducing agent thapsigargin. As these cells are a commonly used model for primary β-cells and has been shown to be vulnerable to ER stress, we hypothesize these cells are incapable of mounting a chaperone defense upon activation of ER stress. To investigate the chaperone expression during an ER stress response, induced by thapsigargin in INS-1E cells, we used quantitative mass spectrometry based proteomics. The results displayed a decrease of GRP78/BiP, PDIA3 and PDIA6. Decrease of GRP78/BiP was verified by Western blot and occurred in parallel with enhanced levels of p-eIF2α and CHOP. In contrast to INS-1E cells, GRP78/BiP was not decreased in MIN6 cell or rat and mouse islets after thapsigargin exposure. Investigation of the decreased protein levels of GRP78/BiP indicates that this is not a consequence of reduced mRNA expression. Rather the reduction results from the combined effect of reduced protein synthesis and enhanced proteosomal degradation and possibly also degradation via autophagy. Induction of ER stress with thapsigargin leads to lower protein levels of GRP78/BiP, PDIA3 and PDIA6 in INS-1E cells which may contribute to the susceptibility of ER stress in this β-cell model.  相似文献   

12.
The hemolytic uremic syndrome (HUS) associated with diarrhea is a complication of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB) was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC) has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF) and platelet/endothelial cell adhesion molecule 1 (PECAM-1). HGEC also expressed the globotriaosylceramide (Gb3) receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 −a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.  相似文献   

13.
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an ‘eat-me’ signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.  相似文献   

14.
Subtilase cytotoxin (SubAB) that selectively cleaves BiP/GRP78 triggers the unfolded protein response (UPR) and protects mice from endotoxic lethality and collagen arthritis. We found that pretreatment of cells with SubAB suppressed tumor necrosis alpha (TNF-α)-induced activation of NF-κB and NF-κB-dependent chemokine expression. To elucidate underlying mechanisms, the involvement of C/EBP and Akt, putative regulators of NF-κB, was investigated. Among members of the C/EBP family, SubAB preferentially induced C/EBPβ. Overexpression of C/EBPβ suppressed TNF-α-induced NF-κB activation, and knockdown of C/EBPβ attenuated the suppressive effect of SubAB on NF-κB. We identified that the ATF6 branch of the UPR plays a crucial role in the induction of C/EBPβ. In addition to this effect, SubAB depressed basal and TNF-α-induced phosphorylation of Akt via the UPR. It was mediated by the induction of ATF6 and consequent activation of mTOR that dephosphorylated Akt. Inhibition of Akt attenuated activation of NF-κB by TNF-α, suggesting that the mTOR-Akt pathway is another target for SubAB-initiated, UPR-mediated NF-κB suppression. These results elucidated that SubAB blunts activation of NF-κB through ATF6-dependent mechanisms, i.e., preferential induction of C/EBPβ and mTOR-dependent dephosphorylation of Akt.  相似文献   

15.
16.
17.
Shiga toxins and Shiga-like toxins (Stx) are a relatively large group of cytotoxins produced by certain serotypes of Shigella and E. coli (STEC). These toxins are responsible for diarrhea, hemorrhagic colitis and may induce hemolytic uremic syndrome (HUS) with serious consequences in young children. The toxins are proteins made up of 5 small B subunits responsible for binding to an outer membrane ligand on host cells and surround the larger, biologically active A subunit. For Shiga-like toxin 1 (Stx1), the cellular receptor is the carbohydrate globotriose. Stx1was purified from STEC. We utilized induction of apoptosis in the human monocyte cell line THP-1, as a biological endpoint to test the stability of Stx1 activity added to fruit punch at different pH (2-9) and temperatures (4 and 20 degrees C). A flow cytometric method was used to test for early and late apoptotic events based on binding of R-phycoerytherin-labeled annexin V to exposed membrane phosphatidyl serine. Membrane permeability to 7-Amino-actinomycin corresponds with late apoptosis or necrosis. The combination of acid pH and higher storage temperature resulted in greatest degree of toxin inactivation. This approach provides a rapid and high throughput method to determine the functional activity of Stx1, and related toxins in a food matrix.  相似文献   

18.
Previous studies have demonstrated that overexpression of GRP78/BiP, an endoplasmic reticulum (ER)-resident molecular chaperone, in mammalian cells inhibits the secretion of specific coagulation factors. However, the effects of GRP78/BiP on activation of the coagulation cascade leading to thrombin generation are not known. In this study, we examined whether GRP78/BiP overexpression mediates cell surface thrombin generation in a human bladder cancer cell line T24/83 having prothrombotic characteristics. We report here that cells overexpressing GRP78/BiP exhibited significant decreases in cell surface-mediated thrombin generation, prothrombin consumption and the formation of thrombin-inhibitor complexes, compared with wild-type or vector-transfected cells. This effect was attributed to the ability of GRP78/BiP to inhibit cell surface tissue factor (TF) procoagulant activity (PCA) because conversion of factor X to Xa and factor VII to VIIa were significantly lower on the surface of GRP78/BiP-overexpressing cells. The additional findings that (i) cell surface factor Xa generation was inhibited in the absence of factor VIIa and (ii) TF PCA was inhibited by a neutralizing antibody to human TF suggests that thrombin generation is mediated exclusively by TF. GRP78/BiP overexpression did not decrease cell surface levels of TF, suggesting that the inhibition in TF PCA does not result from retention of TF in the ER by GRP78/BiP. The additional observations that both adenovirus-mediated and stable GRP78/BiP overexpression attenuated TF PCA stimulated by ionomycin or hydrogen peroxide suggest that GRP78/BiP indirectly alters TF PCA through a mechanism involving cellular Ca(2+) and/or oxidative stress. Similar results were also observed in human aortic smooth muscle cells transfected with the GRP78/BiP adenovirus. Taken together, these findings demonstrate that overexpression of GRP78/BiP decreases thrombin generation by inhibiting cell surface TF PCA, thereby suppressing the prothrombotic potential of cells.  相似文献   

19.
HeLa cells stably expressing the α chain of T-cell receptor (αTCR), a model substrate of ER-associated degradation (ERAD), were used to analyze the effects of BiP/Grp78 depletion by the SubAB cytotoxin. SubAB induced XBP1 splicing, followed by JNK phosphorylation, eIF2α phosphorylation, upregulation of ATF3/4 and partial ATF6 cleavage. Other markers of ER stress, including elements of ERAD pathway, as well as markers of cytoplasmic stress, were not induced. SubAB treatment decreased absolute levels of αTCR, which was caused by inhibition of protein synthesis. At the same time, the half-life of αTCR was extended almost fourfold from 70 min to 210 min, suggesting that BiP normally facilitates ERAD. Depletion of p97/VCP partially rescued SubAB-induced depletion of αTCR, confirming the role of VCP in ERAD of αTCR. It therefore appears that ERAD of αTCR is driven by at least two different ATP-ase systems located at two sides of the ER membrane, BiP located on the lumenal side, while p97/VCP on the cytoplasmic side. While SubAB altered cell morphology by inducing cytoplasm vacuolization and accumulation of lipid droplets, caspase activation was partial and subsided after prolonged incubation. Expression of CHOP/GADD153 occurred only after prolonged incubation and was not associated with apoptosis.  相似文献   

20.
Incubation of Swiss 3T3 cells with [2-3H]adenine, as in other cell types, reveals the ADP-ribosylation of GRP78 (the 78-kDa glucose-regulated protein, also known as BiP, the immunoglobulin heavy chain-binding protein), a resident endoplasmic reticulum protein that assists in the processing of proteins destined for secretion or cell surface expression. Here we show that Pasteurella multocida toxin, a potent growth factor for cultured fibroblasts, decreased the ADP-ribosylation of GRP78/BiP to 16 +/- 6% of the control value (n = 23). The action of the toxin occurred after a lag period, was blocked by lysosomotrophic agents, and potentiated by increased incubation time (ED50 4 ng/ml and 1 ng/ml in 4 and 8 h, respectively), thus indicating that the toxin enters the cells to act. Bombesin and platelet-derived growth factor (PDGF) similarly decreased the ADP-ribosylation of GRP78/BiP (ED50 0.5 nM and 2.5 ng/ml, respectively) but acted more rapidly than the toxin. Signaling pathways activated by the toxin, bombesin, and PDGF had effects on the ADP-ribosylation of GRP78/BiP. Thus, activation of protein kinase C alone by phorbol 12,13-dibutyrate was partially effective, and down-regulation of protein kinase C attenuated but did not block the action of the toxin, bombesin, and PDGF. Agents that mobilize Ca2+ from the endoplasmic reticulum (A23187, ionomycin, and thapsigargin) caused a decrease in the ADP-ribosylation of GRP78/BiP that was similar in magnitude to that achieved by the toxin, bombesin, and PDGF, implicating a role for inositol 1,4,5-trisphosphate-mediated Ca2+ mobilization in the action of the mitogenic agents. The growth factor-induced decrease in the ADP-ribosylation of GRP78/BiP may represent its conversion from an inactive to an active state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号