首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Catalase is an antioxidant enzyme that plays a significant role in protection against oxidative stress by detoxification of hydrogen peroxide (H2O2). A gene coding for a putative catalase was isolated from the disk abalone (Haliotis discus discus) cDNA library and denoted as Ab-catalase. The full-length (2864 bp) Ab-catalase cDNA contained 1,503 bp open reading frame (ORF), encoding 501 amino acid residues with 56 kDa predicted molecular weight. The deduced amino acid sequence of Ab-catalase has characteristic features of catalase family such as catalytic site motif (61FNRERIPERVVHAKGAG77), heme-ligand signature motif (351RLYSYSDT358), NADPH and heme binding residues. Phylogenetic and pairwise identity results indicated that Ab-catalase is more similar to scallop (Chlamys farreri) catalase with 80% amino acid identity except for other reported disk abalone catalase sequences. Constitutive Ab-catalase expression was detected in gill, mantle, gonad, hemocytes, abductor muscle and digestive tract in tissue specific manner. Ab-catalase mRNA was up-regulated in gill and digestive tract tissues for the first 3h post injection of H2O2, showing the inducible ability of abalone catalase against oxidative stress generated by H2O2. The purified recombinant catalase showed 30,000 U/mg enzymatic activity against H2O2 and biochemical properties of higher thermal stability and broad spectrum of pH. Our results suggest that abalone catalase may play an important role in regulating oxidative stress by scavenging H2O2.  相似文献   

2.
Bai Z  Yuan Y  Yue G  Li J 《PloS one》2011,6(7):e22886
Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5' untranslated region (UTR) and a 144 bp 3' UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5'-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii.  相似文献   

3.
Myxovirus resistance (Mx) protein is one of the most studied antiviral proteins. It is induced by the type I interferon system (IFN alpha/beta) in various vertebrates, but its expression has not been identified or characterized in mollusks or other multi-cellular invertebrates to date. In this study, we isolated the Mx gene from a disk abalone (Haliotis discus discus) normalized cDNA library. Mx cDNA was sequenced, cloned and compared to other known Mx proteins. The full-length 1664 bp of abalone Mx cDNA contained a 1533-bp open reading frame that codes for 511 amino acids. Within the coding sequence of abalone Mx, characteristic features were found, such as a tripartite guanosine-5'-triphosphate (GTP)-binding motif and a dynamin family signature. In addition, leucine residues in the C-terminal region displayed a special leucine domain at L(468), L(475), L(489) and L(510), suggesting that abalone Mx may have a similar oligomerization function as other leucine zipper motifs. Abalone Mx protein exhibited 44% amino acid similarity with channel catfish Mx1, rainbow trout Mx2 and Atlantic halibut Mx. Abalones were injected intramuscularly with the known IFN inducer poly I:C and RT-PCR was performed for Mx mRNA analysis. The results showed enhanced Mx expression in abalone gill and digestive tissues 24h as well as 48 h after injection of poly I:C. Mx mRNA was expressed in gill, digestive gland, mantle and foot tissues in healthy abalone, suggesting that the basal level of Mx expressed is tissue-specific. There is no known Mx protein closely related to abalone Mx according to phylogenetic analysis. Abalone Mx may have diverged from a common gene ancestor of fish and mammalian Mx proteins, since abalone Mx showed high similarity in terms of conserved tripartite GTP-binding, dynamin family signature motifs and poly I:C enhancement of Mx mRNA expression.  相似文献   

4.
Insect secreted ferritins are composed of subunits, which resemble heavy and light chains of vertebrate cytosolic ferritins. We describe here the cloning, expression and characterization of cDNAs encoding the ferritin heavy-chain homologue (HCH) and light-chain homologue (LCH) from the mulberry longicorn beetle, Apriona germari (Coleoptera, Cerambycidae). The A. germari ferritin LCH and HCH cDNA sequences were comprised of 672 and 636 bp encoding 224 and 212 amino acid residues, respectively. The A. germari ferritin HCH subunit contained the conserved motifs for the ferroxidase center typical of vertebrate ferritin heavy chains and the iron-responsive element (IRE) sequence with a predicted stem-loop structure was present in the 5′-untranslated region (UTR) of ferritin HCH mRNA. However, the A. germari ferritin LCH subunit had no IRE at its 5′-UTR and ferroxidase center residues. Phylogenetic analysis confirmed the deduced protein sequences of A. germari ferritin HCH and LCH being divided into two types, G type (LCH) and S type (HCH). Southern blot analysis suggested the possible presence of each A. germari ferritin subunit gene as a single copy and Northern blot analysis confirmed a higher expression pattern in midgut than fat body. The cDNAs encoding the A. germari ferritin subunits were expressed as approximately 30 kDa (LCH) and 26 kDa (HCH) polypeptides in baculovirus-infected insect cells. Western blot analysis and iron staining assay confirmed that A. germari ferritin has a native molecular mass of approximately 680 kDa.  相似文献   

5.
6.
Acid-soluble collagens were prepared from connective tissues in the abalone Haliotis discus foot and adductor muscles with limited proteolysis using pepsin. Collagen preparation solubilized with 1% pepsin contained two types of alpha-chains which were different in their N-terminal amino acid sequences. Accordingly, two types of full-length cDNAs coding for collagen proalpha-chains were isolated from the foot muscle of the same animal and these proteins were named Hdcols (Haliotis discus collagens) 1alpha and 2alpha. The two N-terminal amino acid sequences of the abalone pepsin-solubilized collagen preparation corresponded to either of the two sequences deduced from the cDNA clones. In addition, several tryptic peptides prepared from the pepsin-solubilized collagen and fractionated by HPLC showed N-terminal amino acid sequences identical to those deduced from the two cDNA clones. Hdcols 1alpha and 2alpha consisted of 1378 and 1439 amino acids, respectively, showing the primary structure typical to those of fibril-forming collagens. The N-terminal propeptides of the two collagen proalpha-chains contained cysteine-rich globular domains. It is of note that Hdcol 1alpha completely lacked a short Gly-X-Y triplet repeat sequence in its propeptide. An unusual structure such as this has never before been reported for any fibril-forming collagen. The main triple-helical domains for both chains consisted of 1014 amino acids, where a supposed glycine residue in the triplet at the 598th position from the N-terminus was replaced by alanine in Hdcol 1alpha and by serine in Hdcol 2alpha. Both proalpha-chains of abalone collagens contained six cysteine residues in the carboxyl-terminal propeptide, lacking two cysteine residues usually found in vertebrate collagens. Northern blot analysis demonstrated that the mRNA levels of Hdcols 1alpha and 2alpha in various tissues including muscles were similar to each other.  相似文献   

7.
Thioredoxin peroxidase (TPx), also named peroxiredoxin (Prx), is an important peroxidase, which can protect organisms against various oxidative stresses. Two TPxs were isolated from a disk abalone (Haliotis discus discus) cDNA library, named as AbTPx1 and AbTPx2, respectively. AbTPx1 and AbTPx2 consist of 1315 and 1045 bp full-length cDNA with 753 and 597 bp open reading frames encoding 251 and 199 amino acids, respectively. The TPx signature motif 1 (FYPLDFTFVCPTEI) and motif 2 (GEVCPA) were conserved in both AbTPx1 and AbTPx2 amino acid sequences. Purified recombinant abalone TPx fusion proteins catalyzed the reduction of H2O2 and butyl hydroperoxide in peroxidase assays. Furthermore, both AbTPx fusion proteins were shown to protect super-coiled DNA from damage by metal-catalyzed oxidation (MCO) in vitro. Escherichia coli cells transformed with AbTPx1 and AbTPx2 coding sequences in pMAL-c2x showed resistance to H2O2 at 0.8 mM concentration by in vivo H2O2 tolerance assay. AbTPx1 and AbTPx2 mRNA were constitutively expressed in gill, mantle, abductor muscle and digestive tract in a tissue specific manner. Additionally, both TPxs mRNA were up-regulated in gill and digestive tract tissues against H2O2 at 3h post injection. The results indicate that AbTPx1 and AbTPx2 gene expressions are induced by oxidative stress and their respective proteins function in the detoxification of different ROS molecules to maintain efficient antioxidant defense in disk abalone.  相似文献   

8.
Ferritin is a ubiquitous protein that plays an important role in iron storage and iron-withholding strategy of innate immunity. In this study, three genes encoding different ferritin subunits were cloned from bay scallop Argopecten irradians (AiFer1, AiFer2 and AiFer3) by rapid amplification of cDNA ends (RACE) approaches based on the known ESTs. The open reading frames of the three ferritins are of 516 bp, 522 bp and 519 bp, encoding 171,173 and 172 amino acids, respectively. All the AiFers contain a putative Iron Regulatory Element (IRE) in their 5′-untranslated regions. The deduced amino acid sequences of AiFers possess both the ferroxidase center of mammalian H ferritin and the iron nucleation site of mammalian L ferritin. Gene structure study revealed two distinct structured genes encoding a ferritin subunit (AiFer3). Quantitative real-time PCR analysis indicated the significant up-regulation of AiFers in hemocytes after challenged with Listonella anguillarum, though the magnitudes of AiFer1 and AiFer2 were much higher than that of AiFer3. Taken together, these results suggest that AiFers are likely to play roles in both iron storage and innate immune defense against microbial infections.  相似文献   

9.
Regucalcin is a novel calcium (Ca(2+)) binding protein and it has been demonstrated to play a multifunctional role in many organisms. Here, we report the molecular cloning of invertebrate regucalcin cDNA from disk abalone Haliotis discus discus. The full length cDNA showed 1321 bp of nucleotides with a polyadenylated sequence (AATAAA). Abalone regucalcin (HdReg) open reading frame (ORF) consists of 918 nucleotides encoding 305 amino acids (aa). Estimated molecular mass was 33 kDa and predicted isoelectric point (pI) was 4.9. The HdReg aa sequence did not contain the EF-hand motif as a Ca(2+) binding domain, suggesting a novel class of Ca(2+) binding protein. Moreover, it showed 45% identity to chicken and zebrafish, and 44% to rat and mouse regucalcin in deduced aa level. The tissue expression analysis of HdReg mRNA was investigated by RT-PCR and it was expressed in all the tissues tested such as gill, mantle, digestive tract, and abductor muscle. Semi-quantitative RT-PCR results showed that an intramuscular administration of calcium chloride (CaCl(2)) (0.5 mg CaCl(2)/g of abalone) could significantly induce regucalcin mRNA in abductor muscle after 30 min of administration and reached maximum after 1 h. Subsequently, the expression level was decreased after 2 h. This indicates that the expression of regucalcin mRNA is constitutive, and specifically up regulated in abalone abductor muscle by Ca(2+) administration.  相似文献   

10.
Transferrin and ferritin are iron-binding proteins involved in transport and storage of iron as part of iron metabolism. Here, we describe the cDNA cloning and characterization of transferrin (Bi-Tf) and the ferritin heavy chain subunit (Bi-FerHCH), from the bumblebee Bombus ignitus. Bi-Tf cDNA spans 2340 bp and encodes a protein of 706 amino acids and Bi-FerHCH cDNA spans 1393 bp and encodes a protein of 217 amino acids. Comparative analysis revealed that Bi-Tf appears to have residues comprising iron-binding sites in the N-terminal lobe, and Bi-FerHCH contains a 5'UTR iron-responsive element and seven conserved amino acid residues associated with a ferroxidase center. The Bi-Tf and Bi-FerHCH cDNAs were expressed as 79 kDa and 27 kDa polypeptides, respectively, in baculovirus-infected insect Sf9 cells. Northern blot analysis revealed that Bi-Tf exhibits fat body-specific expression and Bi-FerHCH shows ubiquitous expression. The expression profiles of the Bi-Tf and Bi-FerHCH in the fat body of B. ignitus worker bees revealed that Bi-Tf and Bi-FerHCH are differentially induced in a time-dependent manner in a single insect by wounding, bacterial challenge, and iron overload.  相似文献   

11.
12.
An endo-beta-1,4-mannanase was isolated from digestive fluid of Pacific abalone, Haliotis discus hannai, by successive chromatographies on TOYPEARL CM-650M, hydroxyapatite, and TOYOPEARL HW50F. The abalone mannanase, named HdMan in the present paper, showed a molecular mass of approximately 39,000 Da on SDS-PAGE, and exhibited high hydrolyic activity on both galactomannan from locust bean gum and glucomannan from konjac at an optimal pH and temperature of 7.5 and 45 degrees C, respectively. HdMan could degrade either beta-1,4-mannan or beta-1,4-mannooligosaccharides to mannotriose and mannobiose similarly to beta-1,4-mannanases from Pomacea, Littorina, and Mytilus. In addition, HdMan could disperse the fronds of a red alga Porphyra yezoensis into cell masses consisting of 10-20 cells that are available for cell engineering of this alga. cDNAs encoding HdMan were amplified by polymerase chain reaction from an abalone-hepatopancreas cDNA library. From the nucleotide sequences of the cDNAs, the sequence of 1232 bp in total was determined and the amino-acid sequence of 377 residues was deduced from the translational region of 1134 bp locating at nucleotide positions 15-1148. The N-terminal region of 17 residues except for the initiation Met, was regarded as the signal peptide of HdMan because it was absent in the HdMan protein and showed high similarity to the consensus sequence for signal peptides of eukaryote secretory proteins. Accordingly, mature HdMan was considered to consist of 359 residues with the calculated molecular mass of 39,627.2 Da. HdMan is classified into glycoside hydrolase family 5 (GHF5) on the basis of sequence homology to GHF5 enzymes.  相似文献   

13.
14.
15.
A cellulase [endo-beta-1,4-D-glucanase (EC 3.2.1.4)] was isolated from the hepatopancreas of abalone Haliotis discus hannai by successive chromatographies on TOYOPEARL CM-650M, hydroxyapatite and Sephacryl S-200 HR. The molecular mass of the cellulase was estimated to be 66 000 Da by SDS/PAGE, thus the enzyme was named HdEG66. The hydrolytic activity of HdEG66 toward carboxymethylcellulose showed optimal temperature and pH at 38 degrees C and 6.3, respectively. cDNAs encoding HdEG66 were amplified by the polymerase chain reaction from an abalone hepatopancreas cDNA library with primers synthesized on the basis of partial amino-acid sequences of HdEG66. By overlapping the nucleotide sequences of the cDNAs, a sequence of 1898 bp in total was determined. The coding region of 1785 bp located at nucleotide position 56-1840 gave an amino-acid sequence of 594 residues including the initiation methionine. The N-terminal region of 14 residues in the deduced sequence was regarded as the signal peptide as it was absent in HdEG66 protein and showed high similarity to the consensus sequence for signal peptides of eukaryote secretory proteins. Thus, matured HdEG66 was thought to consist of 579 residues. The C-terminal region of 453 residues in HdEG66, i.e. approximately the C-terminal three quarters of the protein, showed 42-44% identity to the catalytic domains of glycoside hydrolase family 9 (GHF9)-cellulases from arthropods and Thermomonospora fusca. While the N-terminal first quarter of HdEG66 showed 27% identity to the carbohydrate-binding module (CBM) of a Cellulomonas fimi cellulase, CenA. Thus, the HdEG66 was regarded as the GHF9-cellulase possessing a family II CBM in the N-terminal region. By genomic PCR using specific primers to the 3'-terminal coding sequences of HdEG66-cDNA, a DNA of 2186 bp including three introns was amplified. This strongly suggests that the origin of HdEG66 is not from symbiotic bacteria but abalone itself.  相似文献   

16.
cDNA cloning of an alginate lyase from abalone, Haliotis discus hannai   总被引:7,自引:0,他引:7  
An alginate lyase, termed HdAly in the present paper, was isolated from the hepatopancreas of abalone, Haliotis discus hannai, by ammonium sulfate fractionation, followed by TOYOPEARL CM-650M column chromatography. Enzymatic properties of HdAly were similar to those of previously reported Haliotis and Turbo poly(M) lyases, e.g., it preferentially degraded a poly(beta-D-mannuronate)-rich substrate with an optimal pH and temperature at pH 8.0 and 45 degrees C, respectively. In order to determine the primary structure of abalone lyase that is still poorly understood, cDNAs for HdAly were cloned by PCR from the abalone hepatopancreas cDNA library and sequenced. From the nucleotide sequences of the cDNAs, the sequence of 909 bp in total was determined, and the amino acid sequence of 273 residues was deduced from the translational region of 822 bp locating at nucleotide positions 27-848. The N-terminal region of 16 residues, except for the initiation Met in the deduced sequence, was regarded as the signal peptide since it was absent in the HdAly protein and showed high similarity to the consensus sequence for signal peptides of eukaryote secretary proteins. This suggests that HdAly is initially produced as a precursor possessing the signal peptide in hepatopancreatic cells and then secreted into digestive tract as the mature form. Thus, the mature HdAly was regarded to consist of 256 residues with the calculated molecular mass of 28895.5 Da. The amino acid sequence of HdAly showed 85 and 28% identity to those of Turbo cornutus alginate lyase SP2 and the C-terminal region of Chlorella virus lyase-like protein CL2, respectively, while it showed no significant identity to those of any bacterial alginate lyases. In order to provide the basis for the structure-function studies and various applications of the abalone lyase, a bacterial expression system was constructed by means of the HdAly-cDNA and pET-3a expression plasmid. Although the active recombinant HdAly was hardly produced at a cultivation temperature 37 degrees C in Escherichia coli BL21 (DE3), a small amount of soluble and active enzyme could be produced when the temperature was lowered to 19 degrees C.  相似文献   

17.
18.
Ferritin is a conserved iron binding protein existing ubiquitously in prokaryotes and eukaryotes. In this study, the gene encoding a ferritin M subunit homologue (SoFer1) was cloned from red drum (Sciaenops ocellatus) and analyzed at expression and functional levels. The open reading frame of SoFer1 is 531 bp and preceded by a 5′-untranslated region that contains a putative Iron Regulatory Element (IRE) preserved in many ferritins. The deduced amino acid sequence of SoFer1 possesses both the ferroxidase center of mammalian H ferritin and the iron nucleation site of mammalian L ferritin. Expression of SoFer1 was tissue specific and responded positively to experimental challenges with Gram-positive and Gram-negative fish pathogens. Treatment of red drum liver cells with iron, copper, and oxidant significantly upregulated the expression of SoFer1 in time-dependent manners. To further examine the potential role of SoFer1 in antioxidation, red drum liver cells transfected transiently with SoFer1 were prepared. Compared to control cells, SoFer1 transfectants exhibited reduced production of reactive oxygen species following H2O2 challenge. Finally, to examine the iron binding potential of SoFer1, SoFer1 was expressed in and purified from Escherichia coli as a recombinant protein. Iron-chelating analysis showed that purified recombinant SoFer1 was capable of iron binding. Taken together, these results suggest that SoFer1 is likely to be a functional ferritin involved in iron sequestration, host immune defence against bacterial infection, and antioxidation.  相似文献   

19.
The role of cysteine residues in the oxidation of ferritin   总被引:3,自引:0,他引:3  
We have shown that ferritin is oxidized during iron loading using its own ferroxidase activity and that this oxidation results in its aggregation (Welch et al., Free Radic. Biol. Med. 31:999-1006; 2001). In this study we determined the role of cysteine residues in the oxidation of ferritin. Loading iron into recombinant human ferritin by its own ferroxidase activity decreased its conjugation by a cysteine specific spin label, indicating that cysteine residues were altered during iron loading. Using LC/MS, we demonstrated that tryptic peptides of ferritin that contained cysteine residues were susceptible to modification as a result of iron loading. To assess the role of cysteine residues in the oxidation of ferritin, we used site-directed mutagenesis to engineer variants of human ferritin H chain homomers where the cysteines were substituted with other amino acids. The cysteine at position 90, which is located at the end of the BC-loop, appeared to be critical for the formation of ferritin aggregates during iron loading. We also provide evidence that dityrosine moieties are formed during iron loading into ferritin by its own ferroxidase activity and that the dityrosine formation is dependent upon the oxidation of cysteine residues, especially cysteine 90. In conclusion, cysteine residues play an integral role in the oxidation of ferritin and are essential for the formation of ferritin aggregates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号