首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian secretory ribonucleases (RNases 1) form a family of extensively studied homologous proteins that were already used for phylogenetic analyses at the protein sequence level previously. In this paper we report the determination of six ribonuclease gene sequences of Artiodactyla and two of Cetacea. These sequences have been used with ruminant homologues in phylogenetic analyses that supported a group including hippopotamus and toothed whales, a group of ruminant pancreatic and brain-type ribonucleases, and a group of tylopod sequences containing the Arabian camel pancreatic ribonuclease gene and Arabian and Bactrian camel and alpaca RNase 1 genes of unknown function. In all analyses the pig was the first diverging artiodactyl. This DNA-based tree is compatible to published trees derived from a number of other genes. The differences to those trees obtained with ribonuclease protein sequences can be explained by the influence of convergence of pancreatic RNases from hippopotamus, camel, and ruminants and by taking into account the information from third codon positions in the DNA-based analyses. The evolution of sequence features of ribonucleases such as the distribution of positively charged amino acids and of potential glycosylation sites is described with regard to increased double-stranded RNA cleavage that is observed in several cetacean and artiodactyl RNases which may have no role in ruminant or ruminant-like digestion. Received: 2 June 1998 / Accepted: 31 August 1998  相似文献   

2.
Cytochromeb gene of marine mammals: Phylogeny and evolution   总被引:2,自引:0,他引:2  
The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.  相似文献   

3.
In mammals pituitary growth hormone (GH) shows a slow basal rate of evolution (0.22 ± 0.03 × 10–9 substitutions/amino acid site/year) which appears to have increased by at least 25–50-fold on two occasions, during the evolution of primates (to at least 10.8 ± 1.3 X 10–9 substitutions/amino acid site/year) and artiodactyl ruminants (to at least 5.6 ± 1.3 X 10–9 substitutions/amino acid site/year). That these rate increases are real, and not due to inadvertent comparison of nonorthologous genes, was established by showing that features of the GH gene sequences that are not expressed as mature hormone do not show corresponding changes in evolutionary rate. Thus, analysis of nonsynonymous substitutions in the coding sequence for the mature protein confirmed the rate increases seen in the primate and ruminant GHs, but analysis of nonsynonymous substitutions in the signal peptide sequence, synonymous substitutions in the coding sequence for signal peptide or mature protein, and 5 and 3 untranslated sequences showed no statistically significant changes in evolutionary rate. Evidence that the increases in evolutionary rate are probably due to positive selection is provided by the observation that in the cases of both ruminant and primate GHs the periods of rapid evolution were followed by a return to a slow rate similar to the basal rate seen in other mammalian GHs. Differences between the biological properties of GHs have been identified which may relate to these periods of rapid adaptive molecular evolution. On the basis of sequence data currently available (but excluding rodent GHs which show an intermediate rate, the basis of which is not clear) for most (90%) of evolutionary time mammalian GHs have been in the slow phase of evolution, with possibly most of the few amino acid substitutions that have occurred being neutral in nature. But most (80%) of the amino acid substitutions that have been introduced into GH during the course of mammalian evolution have been accepted during the rapid phases and were adaptive in nature.  相似文献   

4.
Antitransferrin (Tf) rabbit serum was highly specific: it reacted with Tfs of ruminants, such as European breeds and Zebu breeds of cattle, Bali cattle, banteng, swamp and river types of water buffalo, anoa, goat, sheep, deer, antelope, camel, and giraffe, but did not react with serum of other non-ruminant species, such as pig, wild boar, hippopotamus, horse, rabbit, rat, chicken, etc. Electrophoresis of Tf and immunoglobulin G (IgG) complexes was carried out using sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE). Within ruminants, the following species showed two Tf molecules on SDS-PAGE; European and Zebu cattle, Bali cattle, banteng, two types of water buffalo, and two species of anoa. Other ruminants, sheep, goat, deer, antelope, camel, and giraffe, etc., showed only one Tf molecule. The Tf heterogeneity in molecular weight was, thus, restricted to Bos, Bubalus, and Anoa. The molecular weight of Tf of water buffalo was slightly larger than that of cattle on the gel. The peptide pattern from cyanogen bromide cleavage of Tf of the water buffalo differed clearly from that of cattle. Fetal Tf showed only one molecule during development, but a newborn calf has two Tf molecules, (one large and one small) within 18 hr after birth. We suggest, therefore, that the small molecules formed during the last month of gestation. The peptide patterns of adult and fetal Tfs cleaved by cyanogen bromide differed with regard to the two large peptides; fetal Tf, lacking the second-largest peptide, had twice the amount of the largest peptide compared with adult Tf. From these results, we suggest that a change in peptide sequence occurs from the last month of gestation, when the largest peptide is degraded to the second largest. However, a Tf-like protein detected in the liver microsomal fraction has only one molecular size, both in adult and in fetal livers.  相似文献   

5.
Although the sister-group relationship between Cetacea and Artiodactyla is widely accepted, the actual artiodactyl group which is closest to Cetacea has not been conclusively identified. In the present study, we have sequenced the complete mitochondrial genome of the hippopotamus, Hippopotamus amphibius, and included it in phylogenetic analyses together with 15 other placental mammals. These analyses separated the hippopotamus from the other suiform included, the pig, and identified the hippopotamus as the artiodactyl sister group of the cetaceans, thereby making both. Artiodactyla and the suborder. Suiformes paraphyletic. The divergence between the hippopotamid and cetacean lineages was calculated using this molecular data and was estimated at ca. 54 Ma BP.  相似文献   

6.
It is believed that short interspersed elements (SINEs) are irreversibly inserted into genomes. We use this concept to try to deduce the evolution of whales using sequence and hybridization studies. The observation that microsatellites are associated with SINEs lead us to screen sequences surrounding cetacean microsatellites for artiodactyl-derived SINEs. Two sequences that were thought to be cetacean SINEs and the bovine SINE were aligned for comparison to sequences flanking microsatellites from ungulates. The bovine SINE was observed only in ruminants while CetSINE1 and 2 were found in mammals. Hybridization studies using these three SINEs revealed that CetSINE1 was found in all ungulates and cetaceans with the strongest hybridization signal observed in the hippopotamus and beluga; CetSINE2 hybridized to all ungulate suborders, while the bovine SINE was only observed in Ruminantia. It is proposed that these putative SINEs are not 'generic' SINEs but mammalian-wide interspersed repeats (MIRs). Caution is urged: what initially appears to be a SINE may instead be a MIR and have reduced evolutionary resolving power.  相似文献   

7.
6种重要经济鱼类生长激素完整cDNA的克隆和序列分析   总被引:11,自引:0,他引:11  
通过RT-PCR、3′RACE、5′-RACE方法,从6种重要经济鱼类——大眼鳜(Siniperca kneri)、石斑鱼(Epinephelus coioides)、黄鳝(Monopterus albus)、鲶鱼(Silurus asotus)、泥鳅(Misgurnus anguillicaudatus)和方正银鲫(Carassius auratus gibelio Bloch,Fang Zheng crucian carp)中克隆了生长激素(Growth Hormone,GH)的完整cDNA序列(除石斑鱼序列外,其他生长激素序列均系第一次克隆),并详细分析了其序列特征。测序结果显示,克隆的6种GH cDNA长度依次为953bp、1023bp、825bp、1082bp、1154bp和1180bp,它们均包含一个长度为600个左右核苷酸的完整阅读框,分别编码一个200个左右氨基酸的蛋白:大眼鳜、石斑鱼和黄鳝GH为204个氨基酸,鲶鱼GH为200个氨基酸,泥鳅和方正银鲫GH为210个氨基酸。这6种蛋白序列与其他已知的鱼类GH序列都有较高的同源性,特别是与相同目的鱼类序列相比。通过序列比对,在这些蛋白序列内鉴定了许多保守的氨基酸残基,其中的大多数聚集而成5个保守域。基于这6种鱼类序列的编码区和其他鱼类的GH编码序列进行分子系统学分析,结果(MP和NJ树)与根据形态特征构建的系统发育树基本一致,特别是在硬骨鱼类较大分类阶元(目间、目以上)的系统发育研究方面比较一致,尽管仍存在一定差异,说明生长激素基因的编码区应该在硬骨鱼类系统发育研究领域得到更多的重视。  相似文献   

8.
Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating expression may be evolving differently from other noncoding regions.  相似文献   

9.
1. Growth hormone (GH)-cDNA was synthesized from poly A(+)-mRNA extracts of chicken pituitary glands. 2. Chicken-cDNA library was cloned into E. coli. 3. Base sequence analysis of chicken GH-cDNA revealed only 70% similarity compared with duck GH-cDNA, and 97% similarity with a previously published chicken GH-cDNA sequence. 4. Dissimilarities in base sequences are primarily observed in the 3'-non-coding region of GH-cDNAs (chicken and duck). 5. Comparisons of amino acid sequences of chicken and duck GH exhibit only three substitutions, while the amino acid sequences of GHs of chicken are identical.  相似文献   

10.
Phylogenetic analyses based on primary structures of mammalian ribonucleases, indicated that three homologous enzymes (pancreatic, seminal and brain ribonucleases) present in the bovine species are the results of gene duplication events, which occurred in the ancestor of the ruminants after divergence from other artiodactyls. In this paper sequences are presented of genes encoding pancreatic and brain-type ribonuclease genes of pronghorn (Antilocapra americana). The seminal-type ribonuclease gene could not be detected in this species, neither by PCR amplification nor by Southern blot analyses, indicating that it may be deleted completely in this species. Previously we demonstrated of a study of amino acid sequences of pancreatic ribonucleases of a large number of ruminants the monophyly of bovids and cervids, and that pronghorn groups with giraffe. Here we present phylogenetic analyses of nucleotide sequences of ribonucleases and other molecules from ruminant species and compare these with published data. Chevrotain (Tragulus) always groups with the other ruminants as separate taxon from the pecora or true ruminants. Within the pecora the relationships between Bovidae, Cervidae, Giraffidae, and pronghorn (Antilocapra) cannot be decided with certainty, although in the majority of analyses Antilocapra diverges first, separately or joined with giraffe. Broad taxon sampling and investigation of specific sequence features may be as important for reliable conclusions in phylogeny as the lengths of analyzed sequences.  相似文献   

11.
Primate growth hormone (GH) has evolved rapidly, having undergone approximately 30% amino acid substitutions from the inferred ancestral eutherian sequence. Nevertheless, human growth hormone (hGH) is physiologically effective when administered to nonprimate mammals. In contrast, its functional counterpart, the human growth hormone receptor (hGHR), has evolved species specificity so that it responds only to Old World primate GHs. It has been proposed that this species specificity of the hGHR is largely caused by the Leu --> Arg change at position 43 after a prior His --> Asp change at position 171 of the GH. Sequence analyses supported this hypothesis and revealed that the transitional phase in the GH:GHR coevolution still persists in New World monkeys. For example, although the GH of the squirrel monkey has the His --> Asp substitution at position 171, residue 43 of its GHR is a Leu, the nonprimate residue. If the squirrel monkey truly represents an intermediate stage of GH:GHR coevolution, its GHR should respond to both hGH and nonprimate GH. Also, if the emergence of species specificity was a result of the selection for a more efficient GH:GHR interaction, then changing residue 43 of the squirrel monkey growth hormone receptor (smGHR) to Arg should increase its binding affinity toward higher primate GH. To test these hypotheses, we performed protein-binding assays between the smGHR and both human and rat GHs, using the surface plasmon resonance methodology. Furthermore, the effects of reciprocal mutations at position 43 of human and squirrel monkey GHRs are measured for their binding affinities toward human and squirrel monkey GHs. The results from the binding kinetic assays clearly demonstrate that the smGHR is in the intermediate state of the evolution of species specificity. Interestingly, the altered residue Arg at position 43 of the smGHR does not lead to an increased binding affinity. The implications of these results on the evolution of the GH:GHR interaction and on functional evolution are discussed.  相似文献   

12.
The fossil record of the Hippopotamidae can shed light on three major issues in mammalian evolution. First, as the Hippopotamidae are the extant sister group of Cetacea, gaining a better understanding of the origin of the Hippopotamidae and of their Paleogene ancestors will be instrumental in clarifying phylogenetic relationships within Cetartiodactyla. Unfortunately, the data relevant to hippopotamid origins have generally been ignored in phylogenetic analyses of cetartiodactyls. In order to obtain better resolution, future analyses should consider hypotheses of hippopotamid Paleogene relationships. Notably, an emergence of the Hippopotamidae from within anthracotheriids has received growing support, leading to reconciliation between genetic and morphological evidence for the clade Cetancodonta (Hippopotamidae + Cetacea). Secondly, full account needs to be taken of the Hippopotamidae when studying the impact of environmental change on faunal evolution. This group of semi‐aquatic large herbivores has a clear and distinct ecological role and a diverse and abundant fossil record, particularly in the African Neogene. We examine three major phases of hippopotamid evolution, namely the sudden appearance of hippopotamines in the late Miocene (the “Hippopotamine Event”), the subsequent rampant endemism in African basins, and the Pleistocene expansion of Hippopotamus. Each may have been influenced by multiple factors, including: late Miocene grass expansion, African hydrographical network disruption, and a unique set of adaptations that allowed Hippopotamus to respond efficiently to early Pleistocene environmental change. Thirdly, the fossil record of the Hippopotamidae documents the independent emergence of adaptive character complexes in relation to semiaquatic habits and in response to insular isolation. The semiaquatic specializations of fossil hippopotamids are particularly useful in interpreting the functional morphology and ecology of other, extinct groups of large semiaquatic herbivores. Hippopotamids can also serve as models to elucidate the evolutionary dynamics of island mammals.  相似文献   

13.
The homology and diversification of genomic sequence encoding glucagon gene among native Egyptian buffalos, camel and sheep were tested using cattle as model. Oligodeoxynucleotide primers designed from the available GenBank data were used for PCR probing of the glucagon gene encoding sequence at different loci. The DNA oligomer probes were constructed to flank either the whole gene encoding sequence or different intra-gene encoding sequences. The PCR products were visualized using agarose gel electrophoresis. All species showed a same size band of prepro-glucagon when PCR was used to amplify the whole gene encoding sequence. In contrary, amplifications of different intra-gene loci failed to give the same results. The results indicated variable degrees of diversity among old world ruminating ungulates in the glucagon gene encoding sequence. Compared with other ruminants, the variation appears predominantly in camel. Surprisingly, the similarity in size between both amplification products of whole gene encoding sequence and the proposed size of glucagon cDNA definitely excludes the possibility of large intervening introns spanning the genomic sequence of the glucagon gene in these species. This indicates that, in contrast to other tested mammals, the glucagon gene includes an essentially full-length copy of glucagon mRNA. The study revealed a possible new aspect of glucagon gene evolution in order to correlate its corresponding protein function among different ruminant species.  相似文献   

14.
Growth hormone (GH) has been previously described as showing distinct evolutionary stories between primates and other mammals. A burst of changes and successive amplification events took place in the primate lineage giving rise to a multigene family in the three Anthropoidea lineages. Polymerase chain reaction (PCR) was used to obtain the genes and the intergenic regions comprising the GH loci of the spider monkey (Ateles geoffroyi), a New-World primate, and of the chimpanzee (Pan troglodytes), an ape. The intergenic sequences of both species were screened by hybridization to detect copies of the Alu family, which have been implicated in the formation of the human GH locus. The GH locus of the spider monkey contains at least six GH-related genes, four of them were cloned. Likewise, five short intergenic sequences of approximately 3 kb were amplified and cloned. On the other hand, in the chimpanzee four new placental lactogen (PL) genes as well as four intergenic regions were amplified. Consequently, in this ape, six genes (two GHs, previously obtained, and four PLs) are clustered, separated by intergenic sequences of different lengths (two short ones of about 5 kb, and at least two long ones between 9 and 13 kb). The presence of Alu sequences within the intergenic regions of both GH loci corroborates the current hypothesis that they acted as a driving force for the locus expansion. GH sequence comparisons reveal that several gene-conversion events might have occurred during the formation of this genome region, which has undergone independent evolution in the three Anthropoidea branches. To establish the GH's evolutionary history may prove to be a difficult task due to these gene-conversion events.  相似文献   

15.
Although some recent morphological and molecular studies agree that Cetacea is closely related to Hippopotamidae, there is little consensus on the phylogeny within Cetartiodactyla. We addressed this problem by conducting two analyses: (1) a simultaneous cladistic analysis of intrinsic data (morphology and molecules) and (2) a stratocladistic analysis, which included morphological, molecular, and stratigraphic data. Unlike previous simultaneous analyses, we had the opportunity to include data from the recently described hindlimbs of protocetid and pakicetid cetaceans. Our intrinsic dataset includes 73 taxa scored for 8,229 informative characters, of which 208 are morphological and 8,021 molecular. Both analyses supported the exclusion of Mesonychia from Cetartiodactyla and a close phylogenetic relationship between Hippopotamidae and Cetacea. Many polytomies in the strict consensus of the most parsimonious trees for the intrinsic dataset can be attributed to differing positions for Raoellidae, which in some trees is the sister-group to Cetacea. Pruning Raoellidae and 18 other taxa from all most parsimonious produced a fully resolved agreement subtree, which indicates that the Old World taxa Cebochoerus and Mixtotherium are successive stem taxa to Whippomorpha (i.e., Cetacea + Hippopotamidae). The main result of adding stratigraphic information to the intrinsic dataset was that we found fewer most parsimonious trees, which in most respects were congruent with a subset of the shortest trees for the intrinsic dataset. Our stratocladistic analysis supports species of Diacodexis as the most basal cetartiodactyls, a clade of suiform cetartiodactyls, a monophyletic Tylopoda that includes Protoceratidae, and a monophyletic Carnivora. We were unable to identify any pre-Miocene stem taxa to Hippopotamidae, thus its ghost lineage is still 39 million years long. The relatively low Bremer support for many nodes in our trees indicates that our phylogenetic hypotheses should be subjected to further testing.  相似文献   

16.
Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants. Correspondence to: D.M. Irwin  相似文献   

17.
18.
Thirty sequences of a short interspersed repetitive element (SINE) were isolated from genomic DNA of Hippopotamus amphibius (hippopotamus). RNA polymerase III split promoter sequence was observed in all of the 30 sequences; and poly(A)-like structure at 3′-end, as well as direct repeat flanking to the repetitive sequence in many of the 30 sequences. A comparison of the consensus sequence of the 30 sequences with sequences in a DNA database (DDBJ/GENBANK/EMBL) revealed 93% homology to the consensus sequence of a whale SINE, CHR-2, and 73% homology to mouse glutamic acid tRNA. Phylogenetic analysis of tRNA-related regions of the sequences with all of the mouse tRNAs revealed that glutamic acid tRNA was genetically closest to the hippopotamus SINE. In addition, the tRNA-related region of the consensus sequence was folded into a cloverleaf structure as with mouse glutamic acid tRNA. These findings led us to conclude that the SINE of hippopotamus was genetically related to a whale SINE, CHR-2 [the hippopotamus SINE was named CHR-2(hippo)] and was a retroposon derived from glutamic acid tRNA. Hipo53 and hipo95, which were the genetically most separated CHR-2(hippo) sequences in the present study, were used as a probe for dot-blot hybridization to examine the distribution of their homologous sequences among animal species. Although the distribution spectra of hipo53 and hipo95 homologous sequences in animal species differed to some extent, large amounts of both sequences were found in Hippopotamus amphibius and Globicephala macrorhynchus (whale); and small amounts in most of the animal species in Artiodactyla examined. These findings indicated that the hippopotamus and whale had more recently branched off from the clade that includes chevrotain and pecorans than the other animal species in the clade. The 30 CHR-2(hippo) sequences were aligned, and the substitution rates among the sequences were calculated with a different substitution rate model for transition and for transversion. The calculation combined with the mutation rate of the pseudogenes (r = 4.6 × 109) indicated that CHR-2(hippo) sequences diversified at least 132 million years ago (Myr). Received: 1 December 1997 / Accepted: 4 March 1998  相似文献   

19.
Summary Complete amino acid sequences are presented for lysozymesc from camel and goat stomachs and compared to sequences of other lysozymesc. Tree analysis suggests that the rate of amino acid replacement went up as soon as lysozyme was recruited for the stomach function in early ruminants. The two lysozymes from goat stomach are the products of a gene duplication that probably took place before the divergence of cow, goat, and deer about 25 million years ago. Partial sequences of three lysozymes from goat tears indicated that (a) the goat tear family of lysozymes may have diverged from the stomach lysozyme family by an ancient duplication and (b) later duplications are probably responsible for the multiple forms of tear and milk lysozymes in ruminants.  相似文献   

20.
The feasibility of using transrectal ultrasonography for imaging the in situ morphology of the reproductive tract of females of several large nondomestic and endangered species was studied. Two black (Diceros bicornis) and 1 white (Diceros simus) rhinoceros, 2 Asian (Elaphus maximus) and 2 African (Loxodonta africana) elephants, 4 banteng (Bos javanicus), 1 gaur (Bos taurus), 1 giraffe (Giraffa camelopardalis), and 1 bactrian camel (Camelus bactrianus) were examined. Real-time ultrasonic images were obtained for the following structures: 1) rhinoceros—corpus luteum, ovarian follicles, uterus, cervix, and early conceptus, 2) elephants—posterior uterus and cervix, 3) banteng and gaur—corpus luteum, ovarian follicles, uterus, cervix, and conceptus, 4) giraffe—posterior uterus, placentomes, and late conceptus, 5) camel—posterior uterus, fetal fluids, and fetal membranes. Individual ovarian follicles were identified and monitored over a 34 day observational period in 1 nontranquilized white rhinoceros. Difficulties and limitations in viewing the ovaries in the elephants were attributed to operator inexperience and to the size, positioning, and demeanor of the animals. Pregnancy was detected in 1 black rhinoceros (27 days), 1 banteng cow (48 days), the giraffe (13 months), and in the bactrian camel (approximately 3½ months). Impending embryonic loss was suspected in the banteng cow because a heartbeat was not detected in the embryo proper; the cow was subsequently diagnosed nonpregnant by transrectal palpation 20 days later. It is concluded that the ability afforded by transrectal ultrasonography to detect and measure ovarian structures and changes in morphology of the tubular genitalia and conceptus provides a research methodology for the elucidation of certain aspects of reproductive biology, and a clinical modality for reproductive management and assisted fertilization programs of large nondomestic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号