首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Apoptosome: a platform for the activation of initiator caspases   总被引:1,自引:0,他引:1  
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  相似文献   

2.
Proteolytic activation of initiator procaspases is a crucial step in the cellular commitment to apoptosis. Alternative models have been postulated for the activation mechanism, namely the oligomerization or induced proximity model and the allosteric regulation model. While the former holds that procaspases become activated upon proper oligomerization by an adaptor protein, the latter states that the adaptor is an allosteric regulator for procaspases. The allosteric regulation model has been applied for the activation of procaspase-9 by apoptotic protease-activating factor (Apaf-1) in an oligomeric complex known as the apoptosome. Using approaches that allow for controlled oligomerization, we show here that aggregation of multiple procaspase-9 molecules can induce their activation independent of the apoptosome. Oligomerization-induced procaspase-9 activation, both within the apoptosome and in artificial systems, requires stable homophilic association of the protease domains, raising the possibility that the function of Apaf-1 is not only to oligomerize procaspase-9 but also to maintain the interaction of the caspase-9 protease domain after processing. In addition, we provide biochemical evidence that other apoptosis initiator caspases (caspase-2 and -10) as well as a procaspase involved in inflammation (murine caspase-11) are also activated by oligomerization. Thus, oligomerization of precursor molecules appears to be a general mechanism for the activation of both apoptosis initiator and inflammatory procaspases.  相似文献   

3.
Assembly of the apoptosome in response to mitochondrial permeabilization, the hallmark of the intrinsic apoptotic pathway, involves binding of cytochrome c to Apaf1, recruitment and auto-processing of the apical/signaling pro-caspase-9, and coupled activation of downstream/executioner caspases like caspase 3. Evidence now indicates that certain apoptotic cascades can bypass the apoptosome and activate caspase-9 independent of the mitochondria. Recently, we have demonstrated that caspase-9 can be activated in Apaf1-mutant primary myoblasts, but not fibroblasts, in response to stimuli that are known to act via the mitochondria. Thus, apoptosomal activation of caspase-9 seems to represent only one of the routes for its activation; other pathways, some of which are yet to be discovered, can bypass the requirement for Apaf1 and activate caspase-9 in a tissue and context specific manner.  相似文献   

4.
Assembly of the apoptosome in response to mitochondrial permeabilization, the hallmark of the intrinsic apoptotic pathway, involves binding of cytochrome c to Apaf1, recruitment and auto-processing of the apical/signaling pro-caspase-9, and coupled activation of downstream/executioner caspases like caspase 3. Evidence now indicates that certain apoptotic cascades can bypass the apoptosome and activate caspase-9 independent of the mitochondria. Recently, we have demonstrated that caspase-9 can be activated in Apaf1-mutant primary myoblasts, but not fibroblasts, in response to stimuli that are known to act via the mitochondria. Thus, apoptosomal activation of caspase-9 seems to represent only one of the routes for its activation; other pathways, some of which are yet to be discovered, can bypass the requirement for Apaf1 and activate caspase-9 in a tissue and context specific manner.  相似文献   

5.
Apo cytochrome c inhibits caspases by preventing apoptosome formation   总被引:2,自引:0,他引:2  
Caspases are cysteine proteases and potent inducers of apoptosis. Their activation and activity is therefore tightly regulated. There are several mechanisms by which caspases can be activated but one key pathway involves release of holo cytochrome c from mitochondria into the cytoplasm. Cytoplasmic holo cytochrome c binds to apoptotic protease activating factor-1 (Apaf-1), driving the formation of an Apaf-1 oligomer (the apoptosome) which in turn binds and activates caspase-9. Previously we showed that the apo form of cytochrome c (lacking heme) can bind Apaf-1 and block both holo-dependent caspase activation in cell extracts and Bax-induced apoptosis in cells. Here we tested the ability of apo cytochrome c to inhibit caspase-9 activation induced by recombinant Apaf-1. Furthermore, using purified proteins and size exclusion chromatography we show that apo cytochrome c prevents holo cytochrome c-dependent apoptosome formation.  相似文献   

6.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

7.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

8.
A novel Apaf-1-independent putative caspase-2 activation complex   总被引:12,自引:0,他引:12  
Caspase activation is a key event in apoptosis execution. In stress-induced apoptosis, the mitochondrial pathway of caspase activation is believed to be of central importance. In this pathway, cytochrome c released from mitochondria facilitates the formation of an Apaf-1 apoptosome that recruits and activates caspase-9. Recent data indicate that in some cells caspase-9 may not be the initiator caspase in stress-mediated apoptosis because caspase-2 is required upstream of mitochondria for the release of cytochrome c and other apoptogenic factors. To determine how caspase-2 is activated, we have studied the formation of a complex that mediates caspase-2 activation. Using gel filtration analysis of cell lysates, we show that caspase-2 is spontaneously recruited to a large protein complex independent of cytochrome c and Apaf-1 and that recruitment of caspase-2 to this complex is sufficient to mediate its activation. Using substrate-binding assays, we also provide the first evidence that caspase-2 activation may occur without processing of the precursor molecule. Our data are consistent with a model where caspase-2 activation occurs by oligomerization, independent of the Apaf-1 apoptosome.  相似文献   

9.
Key structural and catalytic features are conserved across the entire family of cysteine-dependent aspartate-specific proteases (caspases). Of the caspases involved in apoptosis signal transduction, the initiator caspases-2, -8 and -9 are activated at multi-protein activation platforms, and activation is thought to involve homo-dimerisation of the monomeric zymogens. Caspase-9, the essential initiator caspase required for apoptosis signalling through the mitochondrial pathway, is activated on the apoptosome complex, and failure to activate caspase-9 has profound pathophysiological consequences. Here, we review the pertinent literature on which the currently prevalent understanding of caspase-9 activation is based, extend this view by insight obtained from recent structural and kinetic studies on caspase-9 signalling, and describe an emerging model for the regulation of caspase-9 activation and activity that arise from the complexity of multi-protein interactions at the apoptosome. This integrated view allows us to postulate and to discuss functional consequences for caspase-9 activation and apoptosis execution that may take centre stage in future experimental cell research on apoptosis signalling.  相似文献   

10.
Caspases are responsible for the execution of programmed cell death (apoptosis) and must undergo proteolytic activation, in response to apoptotic stimuli, to function. The mechanism of initiator caspase activation has been generalized by the induced proximity model, which is thought to drive dimerization-mediated activation of caspases. The initiator caspase, caspase-9, exists predominantly as a monomer in solution. To examine the induced proximity model, we engineered a constitutively dimeric caspase-9 by relieving steric hindrance at the dimer interface. Crystal structure of the engineered caspase-9 closely resembles that of the wild-type (WT) caspase-9, including all relevant structural details and the asymmetric nature of two monomers. Compared to the WT caspase-9, this engineered dimer exhibits a higher level of catalytic activity in vitro and induces more efficient cell death when expressed. However, the catalytic activity of the dimeric caspase-9 is only a small fraction of that for the Apaf-1-activated caspase-9. Furthermore, in contrast to the WT caspase-9, the activity of the dimeric caspase-9 can no longer be significantly enhanced in an Apaf-1-dependent manner. These findings suggest that dimerization of caspase-9 may be qualitatively different from its activation by Apaf-1, and in conjunction with other evidence, posit an induced conformation model for the activation of initiator caspases.  相似文献   

11.
During apoptosis, release of cytochrome c initiates dATP-dependent oligomerization of Apaf-1 and formation of the apoptosome. In a cell-free system, we have addressed the order in which apical and effector caspases, caspases-9 and -3, respectively, are recruited to, activated and retained within the apoptosome. We propose a multi-step process, whereby catalytically active processed or unprocessed caspase-9 initially binds the Apaf-1 apoptosome in cytochrome c/dATP-activated lysates and consequently recruits caspase-3 via an interaction between the active site cysteine (C287) in caspase-9 and a critical aspartate (D175) in caspase-3. We demonstrate that XIAP, an inhibitor-of-apoptosis protein, is normally present in high molecular weight complexes in unactivated cell lysates, but directly interacts with the apoptosome in cytochrome c/dATP-activated lysates. XIAP associates with oligomerized Apaf-1 and/or processed caspase-9 and influences the activation of caspase-3, but also binds activated caspase-3 produced within the apoptosome and sequesters it within the complex. Thus, XIAP may regulate cell death by inhibiting the activation of caspase-3 within the apoptosome and by preventing release of active caspase-3 from the complex.  相似文献   

12.
Apoptosome dysfunction in human cancer   总被引:11,自引:4,他引:7  
Apoptosis is a cell suicide mechanism that enables organisms to control cell number and eliminate cells that threaten survival. The apoptotic cascade can be triggered through two major pathways. Extracellular signals such as members of the tumor necrosis factor (TNF) family can activate the receptor-mediated extrinsic pathway. Alternatively, stress signals such as DNA damage, hypoxia, and loss of survival signals may trigger the mitochondrial intrinsic pathway. In the latter, mitochondrial damage results in cytochrome c release and formation of the apoptosome, a multimeric protein complex containing Apaf-1, cytochrome c , and caspase-9. Once bound to the apoptosome, caspase-9 is activated, and subsequently triggers a cascade of effector caspase activation and proteolysis, leading to apoptotic cell death. Recent efforts have led to the identification of multiple factors that modulate apoptosome formation and function. Alterations in the expression and/or function of these factors may contribute to the pathogenesis of cancer and resistance of tumor cells to chemotherapy or radiation. In this review we discuss how disruption of normal apoptosome formation and function may lead or contribute to tumor development and progression.  相似文献   

13.
The cyclic AMP signal transduction pathway modulates apoptosis in diverse cell types, although the mechanism is poorly understood. A critical component of the intrinsic apoptotic pathway is caspase-9, which is activated by Apaf-1 in the apoptosome, a large complex assembled in response to release of cytochrome c from mitochondria. Caspase-9 cleaves and activates effector caspases, predominantly caspase-3, resulting in the demise of the cell. Here we identified a distinct mechanism by which cyclic AMP regulates this apoptotic pathway through activation of protein kinase A. We show that protein kinase A inhibits activation of caspase-9 and caspase-3 downstream of cytochrome c in Xenopus egg extracts and in a human cell-free system. Protein kinase A directly phosphorylates human caspase-9 at serines 99, 183, and 195. However, mutational analysis demonstrated that phosphorylation at these sites is not required for the inhibitory effect of protein kinase A on caspase-9 activation. Importantly, protein kinase A inhibits cytochrome c-dependent recruitment of procaspase-9 to Apaf-1 but not activation of caspase-9 by a constitutively activated form of Apaf-1. These data indicate that extracellular signals that elevate cyclic AMP and activate protein kinase A may suppress apoptosis by inhibiting apoptosome formation downstream of cytochrome c release from mitochondria.  相似文献   

14.
Generation of reactive oxygen species (ROS) and activation of caspase cascade are both indispensable in Fas-mediated apoptotic signaling. Although ROS was presumed to affect the activity of the caspase cascade on the basis of findings that antioxidants inhibited the activation of caspases and that the stimulation of ROS by itself activated caspases, the mechanism by which these cellular events are integrated in Fas signaling is presently unclear. In this study, using human T cell leukemia Jurkat cells as well as an in vitro reconstitution system, we demonstrate that ROS are required for the formation of apoptosome. We first showed that ROS derived from mitochondrial permeability transition positively regulated the apoptotic events downstream of mitochondrial permeability transition. Then, we revealed that apoptosome formation in Fas-stimulated Jurkat cells was clearly inhibited by N-acetyl-L-cysteine and manganese superoxide dismutase by using both the immunoprecipitation and size-exclusion chromatography methods. To confirm these in vivo findings, we next used an in vitro reconstitution system in which in vitro-translated apoptotic protease-activating factor 1 (Apaf-1), procaspase-9, and cytochrome c purified from human placenta were activated by dATP to form apoptosome; the formation of apoptosome was markedly inhibited by reducing reagents such as DTT or reduced glutathione (GSH), whereas hydrogen peroxide prevented this inhibition. We also found that apoptosome formation was substantially impaired by GSH-pretreated Apaf-1, but not GSH-pretreated procaspase-9 or GSH-pretreated cytochrome c. Collectively, these results suggest that ROS plays an essential role in apoptosome formation by oxidizing Apaf-1 and the subsequent activation of caspase-9 and -3.  相似文献   

15.
由细胞色素C(Cytochrome c,Cyt c)、ATP/dATP、凋亡酶激活因子-1(apoptotic protease activating factor-1,Apaf-1)以及procaspase-9(caspase-9的前体)构成的约700 kDa、具有很强的caspase酶激活活性的大分子蛋白复合物——凋亡体(apoptosome),在哺乳动物线粒体凋亡途径和胚胎发育中至关重要。描述了凋亡体上各因子的结构、功能及其相互关系,线粒体介导的凋亡通路中凋亡体的形成及其调控。  相似文献   

16.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

17.
Potokar M  Milisav I  Kreft M  Stenovec M  Zorec R 《FEBS letters》2003,544(1-3):153-159
Caspase-9 is an apoptosis initiator protease activated as a response to the mitochondrial damage in the cytoplasmic complex apoptosome. By fluorescence labelling of proteins, confocal microscopy and subcellular fractionations we demonstrate that caspase-9 is in the cytoplasm of non-apoptotic pituitary cells. The activation of apoptosis with rotenone triggers the redistribution of caspase-9 to mitochondria. Experiments using the general caspase inhibitor z-VAD.fmk and the specific caspase-9 inhibitor z-LEHD.fmk show that the caspase-9 redistribution is a regulated process and requires the activity of a caspase other than the caspase-9. We propose that this spatial regulation is required to control the activity of caspase-9.  相似文献   

18.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

19.
Apoptosomes are signaling platforms that initiate the dismantling of a cell during apoptosis. In mammals, assembly of the apoptosome is the pivotal point in the mitochondrial pathway of apoptosis, and is prompted by binding of cytochrome c to the apoptotic protease-activating factor 1 (Apaf-1) in the presence of ATP. The resulting wheel-like heptamer of seven molecules Apaf-1 and seven molecules cytochrome c binds and activates the initiator caspase-9, which in turn ignites the downstream caspase cascade. In this review we discuss the molecular determinants for the formation of the mammalian apoptosome and caspase activation and describe the related signaling platforms in flies and nematodes.  相似文献   

20.
By revealing the biochemistry of apoptosis it is expected we will both improve our understanding of diseases where apoptosis plays an important role and aid the development of therapies for these disorders. Caspases are a family of proteases whose activity is required for apoptosis. In this study, a cell-free system was used to investigate the mechanism of caspase-9 activation in extracts from heart cells. Unlike extracts from other cell types, heart extracts were found to activate caspases poorly. This could be explained by the low levels of Apaf-1 in heart cells. However, subsequent testing showed that heart extracts contained an inhibitor of caspase activation that could block caspase activation in extracts from different cell types. Subsequent purification of the inhibitor of caspase activation from these extracts identified ATP. Caspase-9 is activated by recruitment into a multi-protein complex, the apoptosome, which then activates downstream caspases that kill the cell. Importantly, size exclusion chromatography showed that ATP inhibits apoptosome formation at physiologically relevant concentrations. Together these data support the hypothesis that intracellular ATP concentration is a critical factor in determining whether an apoptotic stimulus can induce apoptosome formation. Thus, the well described fall in intracellular ATP apoptosis is not an epiphenomenon but may be a pro-apoptotic event contributing to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号