首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.  相似文献   

2.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

3.
When soybean plants are pulsed with [35S]sulphate, label is subsequently redistributed from the roots to the leaves. This confounds studies to measure the redistribution of label from leaves. Accordingly, soybean plants ( Glycine max [L.] Merr. cv. Stephens) were grown in 20 μ M sulphate and a small portion of the root system (donor root) was pulsed with [35S]sulphate for 24 h. After removing the donor root, the plants were transferred into unlabelled solution, either without sulphate (S20→SO) or with 20 μ M sulphate (S20→20) (intact plants). Also at this time, the expanding leaf (L3) was excised from half of the plants in each treatment (excised plants). Immediately after the pulse, only ca 15% of the label occurred in the roots and ca 40% in the expanding leaf, L3, mostly in the soluble fraction. In intact S20→20 plants, 35S-label was exported from the soluble fraction of L3, mostly as sulphate, whilst L4 and L5 imported label. Similar responses occurred in S20→SO plants except that export of label from L3 was more rapid. Excision of L3 from S20→S20 plants inhibited labelling of leaves L4-L6 but not total sulphur, whereas in S20→SO plants, excision of L3 inhibited the import of both total sulphur and 35S-label in leaves L4, L5 and L6. The data suggest that the soluble fraction of almost fully expanded leaves is an important reserve of sulphur for redistribution to growing leaves. The 35S-label in the root system exhibited fluctuations consistent with its proposed role in the recycling of soluble sulphur from the leaves.  相似文献   

4.
The effects of varying the amount of sucrose used to supplementthe culture medium maintaining the growth of excised roots ofPisum sativum L., Vicia faba L., Zea mays L. and Phaseolus vulgarisL., on the rates of primordium initiation and subsequent emergenceas lateral roots and on the duration of the interval betweenprimordium inception and emergence as a secondary root throughthe tissues of the primary have been investigated. Variation in the exogenous concentration of sucrose from 0.5to 8 per cent had little effect on the rate of primordium inceptionin Pisum and Vicia and the rates never reached the values obtainedfor the roots of the corresponding intact plants. Moreover,over the 6 day culture period lateral root emergence did notoccur in any of the excised roots of these two species. In contrast,each of the aspects of primordium development examined in theexcised roots of Zea and Phaseolus was markedly affected bythe amount of sucrose used to supplement the culture medium.In addition, in the presence of about 6 per cent sucrose, primordiumdevelopment in these cultured roots was very similar to thatin roots of the corresponding intact plants. The results indicate either that some factor necessary for primordiumdevelopment is present in adequate amounts in excised rootsof Zea and Phaseolus, but not in those of Pisum and Vicia, orthat the factors controlling such development are differentin the former and latter two species. Vicia faba L., Pisum sativum L., Zea mays L., Phaseolus vulgaris L., broad bean, garden pea, maize, dwarf bean, primordium development, sucrose concentration, cultured roots  相似文献   

5.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):875-882
A long-term, steady-state 13CO2 assimilation system at a constantCO2 concentration with a constant 13C abundance was designedand applied to quantitative investigations on the allocationof photoassimilated carbon in nodulated soya bean (Glycine maxL.) plants. The CO2 concentration in the assimilation chamberand its 13C abundance were maintained constant with relativevariances of less than ±0.5 per cent during an 8-h assimilationperiod. At the termination of 8-h 13CO2 assimilation by plantsat early flowering stage, the currently assimilated carbon relativeto total tissue carbon (measured by the degree of isotopic saturation)were for young leaves (including flower buds), 13.9 per cent;mature leaves, 15.7 per cent; stems+petioles, 5.9 per cent;roots, 5.4 per cent and nodules, 6.9 per cent, 48 h after theend of the 13CO2 assimilation period, they were 12.3, 7.5, 7.4,6.8 and 6.1 per cent, respectively. The treatment with a highconcentration of nitrate in the nutrient media significantlydecreased the allocation of 13C into nodules. Experiments on13CO2 assimilation by plants at the pod-filling stage were alsoconducted. Labelling by 13C was weaker than at the early floweringstage, but an intense accumulation of 13C into reproductiveorgans was observed. Glycine max L., nodulated soya bean plants, 13CO2 assimilation, carbon dynamics  相似文献   

6.
The Effect of Source-Sink Alterations on Soybean Seed Growth   总被引:3,自引:0,他引:3  
Soybeans (Glycine max L. Merrill) were grown in the greenhouseand in the field to investigate the effect of variations inthe assimilate supply during the linear phase of seed developmenton the rate and duration of growth of individual seeds. Increasedassimilate supplies, created by partial fruit removal, increasedrates of dry matter accumulation, duration of seed growth, andfinal seed size (weight per seed). Reductions in the supplyof assimilate to the developing seed, created by shading (60per cent) the plants during the linear phase of seed development,lowered seed growth rate but did not affect final seed sizebecause of a longer duration of seed growth. Nitrogen stressduring seed development, created by removing N from the nutrientmedium, did not affect seed growth rate but shortened the durationof seed growth and reduced final seed size. The data indicatethat the growth characteristics of soybean seed are influencedby the supply of assimilate to the seed during the linear phaseof seed development. Glycine max L., soybean, seed growth rate, duration of seed growth, effective filling period  相似文献   

7.
Soybeans (Glycine max [L.] Merr. cv. NC 69-2774) were used to study the nonstructural carbohydrate and nitrogen content of plant tissues, and nitrogenase activity throughout the development of male-sterile and male-fertile plants. Male-sterile plants set approximately 85% fewer pods plus seed than the male-fertile siblings and retained green leaves until a killing frost at 145 days after emergence. Reduced pod set caused increased carbohydrate accumulation in the leaf and root systems of male-sterile plants. Total carbohydrate in roots of male-sterile plants increased from 1.7 to 7.6 times that in the male-fertile roots. A high proportion (60 to 70%) of the male-sterile root carbohydrate was starch. Apparently, root starch was not metabolized by the male-sterile plants. Late in plant development per cent nitrogen was higher in the male-sterile soybean tissues. However, no difference was found in the ability of the nodulated root systems from either genotype to fix nitrogen.  相似文献   

8.
Unsuitable temperatures are frequently encountered by soybean(Glycine max L. Merr.) plants grown in the field. Certain polyolshave been reported to protect plants from high temperature orfrost damage. Controlled environment studies were conductedto investigate the effect of stressful temperature regimes onthe content of pinitol (3-O-methyl-D-chiro-inositol) in soybeanplants. Hydroponically-grown soybean plants were subjected tohigh (35/30 C) or low (15/10 C) day/night temperature stresses,and pinitol content in different plant parts was determinedusing high performance liquid chromatography (HPLC). A syntheticplant growth regulator, PGR-IV, was foliarly applied to theplants to evaluate its effect on pinitol content in differentplant components. Uniformly-labelled 14C-glucose was fed intothe leaves via the transpiration stream, and the effects ofhigh temperature and EXP-S1089, another synthetic plant growthregulator, on the incorporation of 14C-glucose into pinitolwas evaluated using HPLC separation and scintillation spectrometry.High-temperature stress significantly increased plant pinitolcontent and the incorporation of 14C-glucose into pinitol, butdecreased the content of sucrose, glucose and fructose. Underlow-temperature stress, there was hardly any change in pinitolcontent, but a drastic increase in soluble sugars. PGR-IV enhancedpinitol translocation from leaves to stems and roots, whileEXP-S1089 increased pinitol/sucrose ratio. Accumulation of pinitolmay be an adjustment mechanism of the plant to reduce high-temperaturedamage, but not low-temperature injuries. Key words: Pinitol, soybean, temperature, plant growth regulator  相似文献   

9.
Mycorrhizal soybean (Glycine max L. Merr. var. Harosoy-63) plants have lower resistances to water transport than nonmy-corrhizal plants after 4.5 weeks of growth. Although resistances of whole plants differ by 40%, there were no differences in the resistances of stems plus leaves, indicating that the major effect of the mycorrhizae was to reduce the resistance of the roots. Since the fungitoxicant, p-chloronitrobenzene, had no effect on resistances to water transport, reduced resistances were probably not caused by a direct modification of the transport pathway by the fungus. Differences in resistance between mycorrhizal and nonmycorrhizal soybean were essentialy eliminated by the application of nutrients to the soil. Thus, lowered resistances of mycorrhizal roots growing in soil with low levels of nutrients probably resulted from the enhanced nutrient status of the plant brought about by the fungus. Mycorrhizal infection increased growth at both low and high nutrient levels.  相似文献   

10.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

11.
Sycamore and soybean cell suspensions were subjected to osmoticstress by culturing for one passage in media supplemented with6 per cent mannitol or sorbitol. The effects on growth wereto reduce cell number and biomass (d. wt) production throughoutthe culture period by about 30 per cent. Ultrastructural studiesat the early exponential phase of culture growth indicated similarreductions in cell wall thickness in both species. Osmoticallystressed sycamore cells became less vacuolate, but no such changeoccurred in stressed soybean cells. Acer pseudoplatanus L., sycamore, Glycine max L. var. Biloxi, soybean, suspension culture cells, osmotic stress, growth, ultrastructure  相似文献   

12.
Diurnal patterns of nonstructural carbohydrate (starch, sucrose, and hexose sugars) concentration were characterized in different parts (leaves, petioles, stems, and roots) of vegetative soybean (Glycine max [L.] Merr.) plants. Pronounced changes in all carbohydrate pools were observed in all plant parts during the normal photosynthetic period; however, starch accumulation within leaves accounted for more than 80% of the nonstructural carbohydrate accumulated by the plant during the light period. Efficiency of utilization of starch and sucrose during the normal dark period differed among organs, with leaves being most efficient in mobilizing starch reserves and roots being most efficient in utilizing sucrose reserves. The vast majority (about 85%) of the whole plant carbohydrate reserves present at the end of the photosynthetic period were utilized during the normal dark period. Sink leaf expansion ceased in plants transferred to extended darkness and the cessation in leaf expansion corresponded with carbohydrate depletion in the subtending source leaf and the remainder of the plant. Collectively, the results indicated that under the conditions employed, leaves are the whole plant's primary source of carbon at night as well as during the day.  相似文献   

13.
Adams CA  Rinne RW 《Plant physiology》1969,44(9):1241-1246
ATP sulfurylase activity varied greatly among different leaves on the soybean plant [Glycine max (L.) Meer.], and high levels of activity did not appear in the leaves until the seedlings were about 3 weeks old. In general, leaves from the top of the plant had a higher activity than leaves from the bottom of the plant. A much greater activity was found in soybean leaves than in soybean roots. The absence of sulfate in the nutrient solution resulted in higher enzyme activity in leaves from young plants and in lower activity in leaves from older plants. Over the growing season, however, ATP sulfurylase activity appeared to be related to sulfur content of the leaf. Several other plant species also had measurable levels of ATP sulfurylase.  相似文献   

14.
CHRISTOU  PAUL 《Annals of botany》1990,66(4):379-386
Transgenic soybean (Glycine max L.) plants derived from electricdischarge particle acceleration experiments exhibited varyingdegrees of chimerism which was followed by the expression ofthe introduced ß-glucuronidase (gus) gene. Degreesof chimerism in transgenic plants were established by determiningexpression of the gus gene observed as blue spots, streaks orsectors in stem and leaf tissues in in vitro grown plantletsand greenhouse plants. Clonal plants were also obtained. Presenceof the gene was confirmed by Southern blot analysis. These studiespermitted the reconstruction of a partial picture for the developmentof the soybean plant. Glycine max L. cv. Williams 82, soybean, transformation, ß-glucuronidase, chimeric plant phenotypes, development  相似文献   

15.
BUNCE  JAMES A. 《Annals of botany》1990,65(6):637-642
Dark carbon dioxide efflux rates of recently fully expandedleaves and whole plants of Amaranthus hypochondriacus L., Glycinemax (L.) Merr., and Lycopersicon esculentum Mill. grown in controlledenvironments at 35 and 70 Pa carbon dioxide pressure were measuredat 35 and 70 Pa carbon dioxide pressure. Harvest data and whole-plant24-h carbon dioxide exchange were used to determine relativegrowth rates, net assimilation rates, leaf area ratios, andthe ratio of respiration to photosynthesis under the growthconditions. Biomass at a given time after planting was greaterat the higher carbon dioxide pressure in G. max and L. esculentum,but not the C4 species, A. hypochondriacus. Relative growthrates for the same range of masses were not different betweencarbon dioxide treatments in the two C3 species, because highernet assimilation rates at the higher carbon dioxide pressurewere offset by lower leaf area ratios. Whole plant carbon dioxideefflux rates per unit of mass were lower in plants grown andmeasured at the higher carbon dioxide pressure in both G. maxand L. esculentum, and were also smaller in relation to daytimenet carbon dioxide influx. Short-term responses of respirationrate to carbon dioxide pressure were found in all species, withcarbon dioxide efflux rates of leaves and whole plants lowerwhen measured at higher carbon dioxide pressure in almost allcases. Amaranthus hypochondriacus L., Glycine max L. Merr., Lycopersicon esculentum Mill., soybean, tomato, carbon dioxide, respiration, growth  相似文献   

16.
Short term experiments were conducted with vegetative soybean plants (Glycine max L. Merr. `Ransom' or `Arksoy') to determine whether sourcesink manipulations, which rapidly changed the `demand' for sucrose and partitioning of photosynthetically fixed carbon into starch, were associated with alterations in activities of sucrose-P synthase and/or cytoplasmic fructose-1,6-bisphosphatase in leaf extracts. When demand for sucrose from a particular source leaf was increased by defoliation of other source leaves, starch accumulation was restricted and activities of both enzymes were markedly enhanced. When demand for sucrose from source leaves was limited by excision, starch accumulation in the detached leaves was increased while activity of sucrose-P synthase declined sharply. The consistent responsiveness of sucrose-P synthase activity to changes in demand for sucrose supports the contention that regulation of sucrose-P synthase is an integral component of the system which controls sucrose biosynthesis and partitioning of carbon between starch and sucrose biosynthesis in the light.  相似文献   

17.
In the present study, leaves of different plant species were girdled by the hot wax collar method to prevent export of assimilates. Photosynthetic activity of girdled and control leaves was evaluated 3 to 7 days later by two methods: (a) carbon exchange rate (CER) of attached leaves was determined under ambient CO2 concentrations using a closed gas system, and (b) maximum photosynthetic capacity (Amax) was determined under 3% CO2 with a leaf disc O2 electrode. Starch, hexoses, and sucrose were determined enzymically. Typical starch storers like soybean (Glycine max L.) (up to 87.5 milligrams of starch per square decimeter in girdled leaves), cotton (Gossypium hirsutum L.), and cucumber (Cucumis sativus L.) responded to 7 days of girdling by increased (80-100%) stomatal resistance (rs) and decreased Amax (>50%). On the other hand, spinach (Spinacia oleracea L.), a typical sucrose storer (up to 160 milligrams of sucrose per square decimeter in girdled leaves), showed only a slight reduction in CER and almost no change in Amax. Intermediate plants like tomato (Lycopersicon esculentum Mill.), sunflower (Helianthus annuus L.), broad bean (Vicia faba L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.), which upon girdling store both starch and sucrose, responded to the girdle by a considerable reduction in CER but only moderate inhibition of Amax, indicating that the observed reduction in CER was primarily a stomatal response. Both the wild-type tobacco (Nicotiana sylvestris) (which upon girdling stored starch and hexoses) and the starchless mutant (which stored only hexoses, up to 90 milligrams per square decimeter) showed 90 to 100% inhibition of CER and approximately 50% inhibition of Amax. In general, excised leaves (6 days) behaved like girdled leaves of the respective species, showing 50% reduction of Amax in wild-type and starchless N. sylvestris but only slight decline of Amax in spinach. The results of the present study demonstrate the possibility of the occurrence of end-product inhibition of photosynthesis in a large number of crop plants. The long-term inhibition of photosynthesis in girdled leaves is not confined to stomatal responses since the Amax declined up to 50%. The inhibition of Amax by girdling was strongest in starch storers, but starch itself cannot be directly responsible, because the starchless mutant of N. sylvestris was also strongly inhibited. Similarly, the inhibition cannot be attributed to hexose sugars either, because soybean, cotton, and cucumber are among the plants most strongly inhibited although they do not maintain a large hexose pool. Spinach, a sucrose storer, showed the least inhibition in both girdled and excised leaf systems, which indicates that sucrose is probably not directly responsible for the end-product inhibition of photosynthesis. The occurrence of strong end-product inhibition appears to be correlated with high acid-invertase activity in fully expanded leaves. The inhibition may be related to the nature of soluble sugar metabolism in the extrachloroplastic compartment and may be caused by a metabolite that has different rates of accumulation and turnover in sucrose storers and other plants.  相似文献   

18.
Metabolites that accumulated in soybean [Glycine max (L.) Merr.]nodules after inhibition of nitrogen fixation were analysedto determine what carbon compounds the bacteroids might obtainfrom their host. Exposure of roots of intact soybean plantsto 100% O2 for 5 min caused a decrease in acetylene reductionactivity within 10 min and then the activity recovered onlyslowly. Analysis of carbohydrates, organic acids, volatile compoundsand amino acids in extracts of nodules revealed that succinate,malate and alanine all accumulated within 10 min after treatmentwith O2. The concentrations of sucrose, acetone, tyrosine, valine,isoleucine, leucine, and ornithine in the nodules increasedslowly after such treatment. The results are discussed in termsof carbon sources for supporting nitrogen fixation of soybeanbacteroids. Key words: Glycine max, carbon metabolism, nitrogen fixation, nodules  相似文献   

19.
Gomes, M. A. F. and Sodek, L. 1987. Reproductive developmentand nitrogen fixation in soybean (Glycine max (L.) Merril).—J.exp. Bot. 38: 1982–1987. Nitrogenase activity (acetylene reduction) was measured duringthe growth cycle of soybean plants induced to flower at twodifferent ages. The decline in nitrogenase activity towardsthe end of the cycle was clearly associated with pod-fillingfor both flowering dates when plants were cultivated under lowerlight and temperature conditions (out of season). Under higherlight and temperature conditions (normal growing season) thedecline was independent of the flowering date. Furthermore,the timing of the decline was not altered when plants were maintainedunder long-day (vegetative) conditions nor when flowers wereremoved. It is suggested that under more favourable growth conditionsthe diversion of assimilates by the fruits is not the primarycause of the decline in nodule activity, but competition bythe fruits may be important when the production of photo-assimilatesis more limited. Key words: Glycine max, nitrogenase, source-sink  相似文献   

20.
Soybean plants (Glycine max [L.] Merr var Amsoy 71) were grown in growth chambers with high-phosphorus (high-P) and low-phosphorus (low-P) culture solutions. Low-P treatment reduced shoot growth significantly 7 days after treatment began. Root growth was much less affected by low-P, there being no significant reduction in root growth rate until 17 days had elapsed. The results suggest that low-P treatment decreased soybean growth primarily through an effect on the expansion of the leaf surface which was diminished by 85%, the main effect of low-P being on the rate of expansion of individual leaves. Low-P had a lesser effect on photosynthesis; light saturated photosynthetic rates at ambient and saturating CO2 levels were lowered by 55 and 45%, respectively, after 19 days of low-P treatment. Low-P treatment increased starch concentrations in mature leaves, expanding leaves and fibrous roots; sucrose concentrations, however, were reduced by low-P in leaves and increased in roots. Foliar F-2,6-BP levels were not affected by P treatment in the light but in darkness they increased with high-P and decreased with low-P. The increase in the starch/sucrose ratio in low-P leaves was correlated primarily with changes in the total activities of enzymes of starch and sucrose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号